Research Article
BibTex RIS Cite

Improved Oil-Water Separation Performance of Polylactic Acid by Halloysite Nanotube Incorporation

Year 2022, Volume: 5 Issue: 2, 77 - 84, 30.11.2022

Abstract

In this study, polylactic acid (PLA)-based nanocomposite membranes were prepared and used for the purification of simulated oil/water based wastewater. The lubricant oil (lubricating oil) was chosen as model oil. In order to increase the hydrophilicity of the membrane and improve its filtration performance, 0-20 wt.% of Halloysite nanotubes (HNT) were added into the PLA matrix. The effects of the HNT ratio on the oil/water swelling ratios (adsorption ratio), water flux, and oil rejection were determined. According to the results, optimal flux-oil rejection results were obtained with 5 wt.% of HNT incorporated nanocomposite membranes. The highest oil rejection of 94.9% was obtained using 5 wt.% of HNT incorporated membrane with a flux value of 1542.9 LMH.

Supporting Institution

Çanakkale Onsekiz Mart

Project Number

FBA-2021-3598

Thanks

This research is financially supported by The Scientific Research Coordination Unit of Çanakkale Onsekiz Mart University (Grant Number: FBA-2021-3598).

References

  • 1. Shamaei L, Khorshidi B, Islam MA, Sadrzadeh M. Development of antifouling membranes using agro-industrial waste lignin for the treatment of Canada’s oil sands produced water. Journal of Membrane Science. 2020 Oct;611:118326.
  • 2. Wu M, Mu P, Li B, Wang Q, Yang Y, Li J. Pine powders-coated PVDF multifunctional membrane for highly efficient switchable oil/water emulsions separation and dyes adsorption. Separation and Purification Technology. 2020  Oct;248:117028.
  • 3. Liu W, Cui M, Shen Y, Zhu G, Luo L, Li M, Li J. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation. Journal of Colloid and Interface Science. 2019 Aug;549:114-22.
  • 4. Sun Y, Zong Y, Yang N, Zhang N, Jiang B, Zhang L, Xiao X. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Separation and Purification Technology. 2020 Mar;234: 116015.
  • 5. You Z, Xu H, Sun Y, Zhang S, Zhang L. Effective treatment of emulsified oil wastewater by the coagulation–flotation process. RSC Advances. 2018 Dec;8(71):40639-46. .
  • 6. Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X. Preparation of three‐dimensional chitosan–graphene oxide aerogel for residue oil removal. Water Environment Research. 2016 Aug;88(8):768-78.
  • 7. Chen WT, Chen KF, Surmpalli RY, Zhang TC, Ou JH, Kao CM. Bioremediation of trichloroethylene‐polluted groundwater using emulsified castor oil for slow carbon release and acidification control. Water Environment Research. 2022 Jan;94(1):e1673.
  • 8. Bilici Z, Ozay Y, Ozbey Unal B, Dizge N. Investigation of the usage potential of calcium alginate beads functionalized with sodium dodecyl sulfate for wastewater treatment contaminated with waste motor oil. Water Environment Research. 2021 Jul;93(11):2623-36.
  • 9. Akarsu C, Bilici Z, Dizge N. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process. Water Environment Research. 2022 Feb;94(2):e10692.
  • 10. Shalaby MS, Sołowski G, Abbas W. Recent Aspects in Membrane Separation for Oil/Water Emulsion. Advanced Materials Interfaces. 2021 Sep;8(20):2100448.
  • 11. Doshi B, Sillanpää M, Kalliola S. A review of bio-based materials for oil spill treatment. Water Research. 2018 May;135:262-77.
  • 12. Ismail NH, Salleh WNW, Awang NA, Ahmad SZN, Rosman N, Sazali N, Ismail AF. PVDF/HMO ultrafiltration membrane for efficient oil/water separation. Chemical Engineering Communications. 2021 Oct;208(4):463-73.
  • 13. Shin JH, Heo JH, Jeon S, Park JH, Kim S, Kang HW. Bio-inspired hollow PDMS sponge for enhanced oil–water separation. Journal of Hazardous Materials. 2019 Mar; 365: 494-501.
  • 14. Wang W, Lin J, Cheng J, Cui Z, Si J, Wang Q, Turng LS. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. Journal of Hazardous Materials. 2020 Mar;385:121582.
  • 15. Prince, JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G. Ultra-wetting graphene-based PES ultrafiltration membrane–a novel approach for successful oil-water separation. Water Research. 2016 Oct;103:311-318.
  • 16. Bolto B, Zhang J, Wu X, Xie Z. A review on current development of membranes for oil removal from wastewaters. Membranes. 2020 Apr;10(4):65.
  • 17. Ikhsan SNW, Yusof N, Aziz F, Misdan N, Ismail AF, Lau WJ, Hairom NHH. Efficient separation of oily wastewater using polyethersulfone mixed matrix membrane incorporated with halloysite nanotube-hydrous ferric oxide nanoparticle. Separation and Purification Technology, 2018 Jun;199:161-9.
  • 18. Amid M, Nabian N, Delavar M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Separation and Purification Technology. 2020 Nov;251:117332.
  • 19. Abdalla O, Wahab MA, Abdala A. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. Journal of Environmental Chemical Engineering. 2020 Oct;8(5);104269.
  • 20. Xiong Z, Lin H, Zhong Y, Qin Y, Li T, Liu F. Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. Journal of Materials Chemistry A. 2017 Mar;5(14):6538-6545.
  • 21. Liu M, Zhang Y, Zhou C. Nanocomposites of halloysite and polylactide. Applied Clay Science. 2013 May;75: 52-59.
  • 22. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals—a review. Clay minerals. 2005 Dec;40(4): 383-426.
  • 23. Saif MJ, Asif HM, Naveed M. Properties and modification methods of halloysite nanotubes: a state-of-the-art review. Journal of the Chilean Chemical Society. 2018 Sep;63(3):4109-4125.
  • 24. Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology. 2021 Feb;256:117827.
  • 25. Ünügül T, Nigiz FU. Evaluation of Halloysite Nanotube–Loaded Chitosan-Based Nanocomposite Membranes for Water Desalination by Pervaporation. Water, Air, & Soil Pollution. 2022 Feb; 233(2):34.
  • 26. Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X. Preparation of three‐dimensional chitosan–graphene oxide aerogel for residue oil removal. Water Environment Research. 2016 Aug;88(8): 768-78.
  • 27. Wu F, Zheng J, Li Z, Liu M. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chemical Engineering Journal. 2019 Mar;359:672-83.
  • 28. Mohammed RR, Ibrahim IA, Taha AH, McKay G. Waste lubricating oil treatment by extraction and adsorption. Chemical Engineering Journal. 2013 Mar; 220:343-51.
  • 29. Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020 Mar;6(3):e03601.
  • 30. Dong Y, Marshall J, Haroosh HJ, Mohammadzadehmoghadam S, Liu D, Qi X, Lau KT. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part A: Applied Science and Manufacturing. 2015 Sep;76: 28-36.
  • 31. Czarnecka-Komorowska D, Bryll K, Kostecka E, Tomasik M, Piesowicz E, Gawdzińska K. The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2021;69(2): e136720.
  • 32. Ikhsan Wan SN, Yusof N. Mat Nawi NI, Bilad MR, Shamsuddin N, Aziz F, Ismail AF. Halloysite nanotube-ferrihydrite incorporated polyethersulfone mixed matrix membrane: effect of nanocomposite loading on the antifouling performance. Polymers. 2021 Jan;13(3):441.
  • 33. Kumar S, Mandal A, Guria C. Synthesis, characterization and performance studies of polysulfone and polysulfone/polymer-grafted bentonite based ultrafiltration membranes for the efficient separation of oil field oily wastewater. Process Safety and Environmental Protection. 2016 Jul;102:214-28.
  • 34. Yuan T, Meng J, Hao T, Zhang Y, Xu M. (2014). Polysulfone membranes clicked with poly (ethylene glycol) of high density and uniformity for oil/water emulsion purification: effects of tethered hydrogel microstructure. Journal of Membrane Science. 2014 Nov;470:112-24.
  • 35. Zhou K, Zhang QG, Li HM, Guo NN, Zhu AM, Liu, QL. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale. 2014 Jul;6(17):10363-9.
  • 36. Ong CS, Lau WJ, Goh PS, Ng BC, Ismail AF. Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalination and Water Treatment. 2015; 53(5):1213-23.
  • 37. Shen C, Zhang Q, Meng Q. PSU-g-SBMA hollow fiber membrane for treatment of oily wastewater. Water Science and Technology. 2021 Dec;84(12): 3576-85.
  • 38. Nigiz FU, Yucak AI, Hilmioglu ND. Purification of emulsified oil by Bentonite loaded polyvinylidene fluoride/polyvinylpyrrolidone membrane. Water Practice and Technology, 2020 Jun;15(2): 394-403.
Year 2022, Volume: 5 Issue: 2, 77 - 84, 30.11.2022

Abstract

Project Number

FBA-2021-3598

References

  • 1. Shamaei L, Khorshidi B, Islam MA, Sadrzadeh M. Development of antifouling membranes using agro-industrial waste lignin for the treatment of Canada’s oil sands produced water. Journal of Membrane Science. 2020 Oct;611:118326.
  • 2. Wu M, Mu P, Li B, Wang Q, Yang Y, Li J. Pine powders-coated PVDF multifunctional membrane for highly efficient switchable oil/water emulsions separation and dyes adsorption. Separation and Purification Technology. 2020  Oct;248:117028.
  • 3. Liu W, Cui M, Shen Y, Zhu G, Luo L, Li M, Li J. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation. Journal of Colloid and Interface Science. 2019 Aug;549:114-22.
  • 4. Sun Y, Zong Y, Yang N, Zhang N, Jiang B, Zhang L, Xiao X. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Separation and Purification Technology. 2020 Mar;234: 116015.
  • 5. You Z, Xu H, Sun Y, Zhang S, Zhang L. Effective treatment of emulsified oil wastewater by the coagulation–flotation process. RSC Advances. 2018 Dec;8(71):40639-46. .
  • 6. Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X. Preparation of three‐dimensional chitosan–graphene oxide aerogel for residue oil removal. Water Environment Research. 2016 Aug;88(8):768-78.
  • 7. Chen WT, Chen KF, Surmpalli RY, Zhang TC, Ou JH, Kao CM. Bioremediation of trichloroethylene‐polluted groundwater using emulsified castor oil for slow carbon release and acidification control. Water Environment Research. 2022 Jan;94(1):e1673.
  • 8. Bilici Z, Ozay Y, Ozbey Unal B, Dizge N. Investigation of the usage potential of calcium alginate beads functionalized with sodium dodecyl sulfate for wastewater treatment contaminated with waste motor oil. Water Environment Research. 2021 Jul;93(11):2623-36.
  • 9. Akarsu C, Bilici Z, Dizge N. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process. Water Environment Research. 2022 Feb;94(2):e10692.
  • 10. Shalaby MS, Sołowski G, Abbas W. Recent Aspects in Membrane Separation for Oil/Water Emulsion. Advanced Materials Interfaces. 2021 Sep;8(20):2100448.
  • 11. Doshi B, Sillanpää M, Kalliola S. A review of bio-based materials for oil spill treatment. Water Research. 2018 May;135:262-77.
  • 12. Ismail NH, Salleh WNW, Awang NA, Ahmad SZN, Rosman N, Sazali N, Ismail AF. PVDF/HMO ultrafiltration membrane for efficient oil/water separation. Chemical Engineering Communications. 2021 Oct;208(4):463-73.
  • 13. Shin JH, Heo JH, Jeon S, Park JH, Kim S, Kang HW. Bio-inspired hollow PDMS sponge for enhanced oil–water separation. Journal of Hazardous Materials. 2019 Mar; 365: 494-501.
  • 14. Wang W, Lin J, Cheng J, Cui Z, Si J, Wang Q, Turng LS. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. Journal of Hazardous Materials. 2020 Mar;385:121582.
  • 15. Prince, JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G. Ultra-wetting graphene-based PES ultrafiltration membrane–a novel approach for successful oil-water separation. Water Research. 2016 Oct;103:311-318.
  • 16. Bolto B, Zhang J, Wu X, Xie Z. A review on current development of membranes for oil removal from wastewaters. Membranes. 2020 Apr;10(4):65.
  • 17. Ikhsan SNW, Yusof N, Aziz F, Misdan N, Ismail AF, Lau WJ, Hairom NHH. Efficient separation of oily wastewater using polyethersulfone mixed matrix membrane incorporated with halloysite nanotube-hydrous ferric oxide nanoparticle. Separation and Purification Technology, 2018 Jun;199:161-9.
  • 18. Amid M, Nabian N, Delavar M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Separation and Purification Technology. 2020 Nov;251:117332.
  • 19. Abdalla O, Wahab MA, Abdala A. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. Journal of Environmental Chemical Engineering. 2020 Oct;8(5);104269.
  • 20. Xiong Z, Lin H, Zhong Y, Qin Y, Li T, Liu F. Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. Journal of Materials Chemistry A. 2017 Mar;5(14):6538-6545.
  • 21. Liu M, Zhang Y, Zhou C. Nanocomposites of halloysite and polylactide. Applied Clay Science. 2013 May;75: 52-59.
  • 22. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals—a review. Clay minerals. 2005 Dec;40(4): 383-426.
  • 23. Saif MJ, Asif HM, Naveed M. Properties and modification methods of halloysite nanotubes: a state-of-the-art review. Journal of the Chilean Chemical Society. 2018 Sep;63(3):4109-4125.
  • 24. Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology. 2021 Feb;256:117827.
  • 25. Ünügül T, Nigiz FU. Evaluation of Halloysite Nanotube–Loaded Chitosan-Based Nanocomposite Membranes for Water Desalination by Pervaporation. Water, Air, & Soil Pollution. 2022 Feb; 233(2):34.
  • 26. Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X. Preparation of three‐dimensional chitosan–graphene oxide aerogel for residue oil removal. Water Environment Research. 2016 Aug;88(8): 768-78.
  • 27. Wu F, Zheng J, Li Z, Liu M. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chemical Engineering Journal. 2019 Mar;359:672-83.
  • 28. Mohammed RR, Ibrahim IA, Taha AH, McKay G. Waste lubricating oil treatment by extraction and adsorption. Chemical Engineering Journal. 2013 Mar; 220:343-51.
  • 29. Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020 Mar;6(3):e03601.
  • 30. Dong Y, Marshall J, Haroosh HJ, Mohammadzadehmoghadam S, Liu D, Qi X, Lau KT. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part A: Applied Science and Manufacturing. 2015 Sep;76: 28-36.
  • 31. Czarnecka-Komorowska D, Bryll K, Kostecka E, Tomasik M, Piesowicz E, Gawdzińska K. The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2021;69(2): e136720.
  • 32. Ikhsan Wan SN, Yusof N. Mat Nawi NI, Bilad MR, Shamsuddin N, Aziz F, Ismail AF. Halloysite nanotube-ferrihydrite incorporated polyethersulfone mixed matrix membrane: effect of nanocomposite loading on the antifouling performance. Polymers. 2021 Jan;13(3):441.
  • 33. Kumar S, Mandal A, Guria C. Synthesis, characterization and performance studies of polysulfone and polysulfone/polymer-grafted bentonite based ultrafiltration membranes for the efficient separation of oil field oily wastewater. Process Safety and Environmental Protection. 2016 Jul;102:214-28.
  • 34. Yuan T, Meng J, Hao T, Zhang Y, Xu M. (2014). Polysulfone membranes clicked with poly (ethylene glycol) of high density and uniformity for oil/water emulsion purification: effects of tethered hydrogel microstructure. Journal of Membrane Science. 2014 Nov;470:112-24.
  • 35. Zhou K, Zhang QG, Li HM, Guo NN, Zhu AM, Liu, QL. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale. 2014 Jul;6(17):10363-9.
  • 36. Ong CS, Lau WJ, Goh PS, Ng BC, Ismail AF. Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalination and Water Treatment. 2015; 53(5):1213-23.
  • 37. Shen C, Zhang Q, Meng Q. PSU-g-SBMA hollow fiber membrane for treatment of oily wastewater. Water Science and Technology. 2021 Dec;84(12): 3576-85.
  • 38. Nigiz FU, Yucak AI, Hilmioglu ND. Purification of emulsified oil by Bentonite loaded polyvinylidene fluoride/polyvinylpyrrolidone membrane. Water Practice and Technology, 2020 Jun;15(2): 394-403.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Full-length articles
Authors

Filiz Uğur Nigiz 0000-0003-0509-8425

Project Number FBA-2021-3598
Publication Date November 30, 2022
Submission Date April 21, 2022
Acceptance Date July 18, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Uğur Nigiz, F. (2022). Improved Oil-Water Separation Performance of Polylactic Acid by Halloysite Nanotube Incorporation. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 5(2), 77-84.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)