Araştırma Makalesi
BibTex RIS Kaynak Göster

The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure

Yıl 2022, , 22 - 25, 12.12.2022
https://doi.org/10.54565/jphcfum.1193117

Öz

This work aims to explain the effects of sonication periods, ranging from 0 to 4 h with a step of 1 h, on the morphology and structural properties of Ni-doped hydroxyapatites at a constant amount of 0.4 at.%. The lattice parameters, crystallinity, and crystallite size were affected by the sonication time. Among the sonicated samples, it was observed that the increasing sonication period reduced the c/a ratio. It was also found that the morphology was affected by the ultrasonication duration.

Kaynakça

  • M. E. El-Naggar, O. A. Abu Ali, M. A. Abu-Saied, M. K. Ahmed, E. Abdel-Fattah and D. I. Saleh. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(1):311-325. doi:https://doi.org/10.1007/s10904-021-02115-w.
  • S. V. Dorozhkin. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International. 2016;42(6):6529-6554. doi:https://doi.org/10.1016/j.ceramint.2016.01.062.
  • V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut’ko, O. N. Musskaya, I. E. Glazov and N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2022;33(2):229-261. doi:https://doi.org/10.1080/09205063.2021.1980985.
  • S. Panda, C. K. Biswas and S. Paul. A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceramics International. 2021;47(20):28122–28144. doi:https://doi.org/10.1016/j.ceramint.2021.07.100.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56(2):781-784. doi:https://doi.org/10.1016/j.matpr.2022.02.256.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil and M. Nabiałek. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International. 2022;48(11):14959-14979. doi:https://doi.org/10.1016/j.ceramint.2022.03.064.
  • M. S. F. Hussin, H. Z. Abdulah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications-A review. Heliyon. 2022;8(8):e10356. doi: https://doi.org/10.1016/j.heliyon.2022.e10356.
  • R. S. Agid, O. Kaygili, N. Bulut, S. V. Dorozhkin, T. Ates, S. Koytepe, B. Ates, I. Ercan, T İnce and B. K. Mahmood. Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Journal of the Australian Ceramic Society. 2020;56:1501–1513. doi:https://doi.org/10.1007/s41779-020-00495-9.
  • R. O. Kareem, O. Kaygili, T. Ates, N. Bulut, S. Koytepe, A. Kuruçay, F. Ercan and I. Ercan. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22):33440-33454. doi:https://doi.org/10.1016/j.ceramint.2022.07.287.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. doi:https://doi.org/10.1016/j.matchemphys.2021.125444.
  • B. A. Priya, K. Senthilguru, T. Agarwal, S. N. G. H. Narayana, S. Giri, K. Pramanik, K. Pal and I. Banerjee. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances. 2015;5:72515-72528. doi:https://doi.org/10.1039/C5RA09560C.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14–15):2377–2387. doi:https://doi.org/10.1016/S0955-2219(00)00154-0.
  • N. Edwin and P. Wilson. Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry. 2019;50:188-199. doi: https://doi.org/10.1016/j.ultsonch.2018.09.018.
  • T. Q. Tran, D. P. Minh, T. S. Phan, Q. N. Pham and H. N. Xuan. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chemical Engineering Science. 2020;228:115975. doi:https://doi.org/10.1016/j.ces.2020.115975.
  • N. Kabilan, K. D. Babu, N. Karthikeyan and K. Chinnakali. Optical nonlinear properties of hydroxyapatite based materials. Optik. 2022;265:169562. doi:https://doi.org/10.1016/j.ijleo.2022.169562.
  • B. Moreno-Perez, Z. Matamoros-Veloza, J. C. Rendon-Angeles, K. Yanagisawa, A. Onda, J. E. Pérez-Terrazas, E. E. Mejia-Martínez, O. B. Díaz and M. Rodríguez-Reyes. Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020;59(2):50-64. doi:https://doi.org/10.1016/j.bsecv.2019.07.001.
  • M. E. El-Naggar, A. Elmushyakhi, A. G. Al-Sehemi, A. Kalam, H. Algarni, S. R. Salem and M. Abou Taleb. Biomedical domains of the as-prepared nanocomposite based on hydroxyapatite, bismuth trioxide and graphene oxide. Journal of Materials Research and Technology. 2022;19:3954-3965. doi:https://doi.org/10.1016/j.jmrt.2022.06.106. , S.-L. Iconaru, M. Motelica-Heino and D. Predoi. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties. Journal of Spectroscopy. 2013;2013:284285. doi:https://doi.org/10.1155/2013/284285.
Yıl 2022, , 22 - 25, 12.12.2022
https://doi.org/10.54565/jphcfum.1193117

Öz

Kaynakça

  • M. E. El-Naggar, O. A. Abu Ali, M. A. Abu-Saied, M. K. Ahmed, E. Abdel-Fattah and D. I. Saleh. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(1):311-325. doi:https://doi.org/10.1007/s10904-021-02115-w.
  • S. V. Dorozhkin. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International. 2016;42(6):6529-6554. doi:https://doi.org/10.1016/j.ceramint.2016.01.062.
  • V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut’ko, O. N. Musskaya, I. E. Glazov and N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2022;33(2):229-261. doi:https://doi.org/10.1080/09205063.2021.1980985.
  • S. Panda, C. K. Biswas and S. Paul. A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceramics International. 2021;47(20):28122–28144. doi:https://doi.org/10.1016/j.ceramint.2021.07.100.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56(2):781-784. doi:https://doi.org/10.1016/j.matpr.2022.02.256.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil and M. Nabiałek. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International. 2022;48(11):14959-14979. doi:https://doi.org/10.1016/j.ceramint.2022.03.064.
  • M. S. F. Hussin, H. Z. Abdulah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications-A review. Heliyon. 2022;8(8):e10356. doi: https://doi.org/10.1016/j.heliyon.2022.e10356.
  • R. S. Agid, O. Kaygili, N. Bulut, S. V. Dorozhkin, T. Ates, S. Koytepe, B. Ates, I. Ercan, T İnce and B. K. Mahmood. Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Journal of the Australian Ceramic Society. 2020;56:1501–1513. doi:https://doi.org/10.1007/s41779-020-00495-9.
  • R. O. Kareem, O. Kaygili, T. Ates, N. Bulut, S. Koytepe, A. Kuruçay, F. Ercan and I. Ercan. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22):33440-33454. doi:https://doi.org/10.1016/j.ceramint.2022.07.287.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. doi:https://doi.org/10.1016/j.matchemphys.2021.125444.
  • B. A. Priya, K. Senthilguru, T. Agarwal, S. N. G. H. Narayana, S. Giri, K. Pramanik, K. Pal and I. Banerjee. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances. 2015;5:72515-72528. doi:https://doi.org/10.1039/C5RA09560C.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14–15):2377–2387. doi:https://doi.org/10.1016/S0955-2219(00)00154-0.
  • N. Edwin and P. Wilson. Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry. 2019;50:188-199. doi: https://doi.org/10.1016/j.ultsonch.2018.09.018.
  • T. Q. Tran, D. P. Minh, T. S. Phan, Q. N. Pham and H. N. Xuan. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chemical Engineering Science. 2020;228:115975. doi:https://doi.org/10.1016/j.ces.2020.115975.
  • N. Kabilan, K. D. Babu, N. Karthikeyan and K. Chinnakali. Optical nonlinear properties of hydroxyapatite based materials. Optik. 2022;265:169562. doi:https://doi.org/10.1016/j.ijleo.2022.169562.
  • B. Moreno-Perez, Z. Matamoros-Veloza, J. C. Rendon-Angeles, K. Yanagisawa, A. Onda, J. E. Pérez-Terrazas, E. E. Mejia-Martínez, O. B. Díaz and M. Rodríguez-Reyes. Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020;59(2):50-64. doi:https://doi.org/10.1016/j.bsecv.2019.07.001.
  • M. E. El-Naggar, A. Elmushyakhi, A. G. Al-Sehemi, A. Kalam, H. Algarni, S. R. Salem and M. Abou Taleb. Biomedical domains of the as-prepared nanocomposite based on hydroxyapatite, bismuth trioxide and graphene oxide. Journal of Materials Research and Technology. 2022;19:3954-3965. doi:https://doi.org/10.1016/j.jmrt.2022.06.106. , S.-L. Iconaru, M. Motelica-Heino and D. Predoi. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties. Journal of Spectroscopy. 2013;2013:284285. doi:https://doi.org/10.1155/2013/284285.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Tankut Ateş 0000-0002-4519-2953

Serhat Keser 0000-0002-9678-1053

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygılı 0000-0002-2321-1455

Yayımlanma Tarihi 12 Aralık 2022
Gönderilme Tarihi 22 Ekim 2022
Kabul Tarihi 7 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ateş, T., Keser, S., Bulut, N., Kaygılı, O. (2022). The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials, 5(2), 22-25. https://doi.org/10.54565/jphcfum.1193117
AMA Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. Aralık 2022;5(2):22-25. doi:10.54565/jphcfum.1193117
Chicago Ateş, Tankut, Serhat Keser, Niyazi Bulut, ve Omer Kaygılı. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials 5, sy. 2 (Aralık 2022): 22-25. https://doi.org/10.54565/jphcfum.1193117.
EndNote Ateş T, Keser S, Bulut N, Kaygılı O (01 Aralık 2022) The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials 5 2 22–25.
IEEE T. Ateş, S. Keser, N. Bulut, ve O. Kaygılı, “The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure”, Journal of Physical Chemistry and Functional Materials, c. 5, sy. 2, ss. 22–25, 2022, doi: 10.54565/jphcfum.1193117.
ISNAD Ateş, Tankut vd. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials 5/2 (Aralık 2022), 22-25. https://doi.org/10.54565/jphcfum.1193117.
JAMA Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. 2022;5:22–25.
MLA Ateş, Tankut vd. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials, c. 5, sy. 2, 2022, ss. 22-25, doi:10.54565/jphcfum.1193117.
Vancouver Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. 2022;5(2):22-5.