Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 11 - 16, 03.06.2024
https://doi.org/10.54565/jphcfum.1456331

Öz

Kaynakça

  • D. S. Gomes, A. M. C. Santos, G. A. Neves and R. R. Menezes. A brief review on hydroxyapatite production and use in biomedicine. Cerâmica. 2019;65:282-302. https://doi.org/10.1590/0366-69132019653742706.
  • A. Haider, S. Haider, S. S. Han and I. K. Kang. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. Rsc Advances 2017;7(13):7442-7458. https://doi.org/10.1039/C6RA26124H.
  • G. Molino, M. C. Palmieri, G. Montalbano, S. Fiorilli and C. Vitale-Brovarone. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review. Biomedical Materials. 2020;15(2):022001. https://doi.org/10.1088/1748-605X/ab5f1a.
  • A. A. Majhooll, I., Zainol, C. N. A., Jaafar, A., Ha, M. Z., Hassan, M., Mudhafar, A. A. Majhool and A. Asaad. A brief review on biomedical applications of hydroxyapatite use as fillers in polymer. J. Chem. 2019;13:112-119. https://doi.org/10.17265/1934-7375/2019.03.004.
  • X. Wang and Y. Han. Dependence of predicted bulk properties of hexagonal hydroxyapatite on exchange–correlation functional. Computational Materials Science. 2023;224:112153. https://doi.org/10.1016/j.commatsci.2023.112153.
  • J. Kamieniak, P. J. Kelly, C. E. Banks and A. M. Doyle. Mechanical, pH and thermal stability of mesoporous hydroxyapatite. Journal of Inorganic and Organometallic Polymers and Materials. 2018;28:84-91. https://doi.org/10.1007/s10904-017-0652-3.
  • M. S. F. Hussin, H. Z. Abdullah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications—A review. Heliyon. 2022;8(8):e10356. https://doi.org/10.1016/j.heliyon.2022.e10356.
  • P. M. Sivakumar, A. A. Yetisgin, S. B. Sahin, E. Demir and S. Cetinel. Enhanced properties of nickel–silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation. Environmental Research. 2023;238:117131. https://doi.org/10.1016/j.envres.2023.117131.
  • M. A. Goldberg, M. R. Gafurov, O. N. Makshakova, S. V. Smirnov, A. S. Fomin, F. F. Murzakhanov and V. S. Komlev. Peculiarities of charge compensation in lithium-doped hydroxyapatite. Heliyon. 2024;10(4):e25291. https://doi.org/10.1016/j.heliyon.2024.e25291.
  • V. Murugesan, M. Vaiyapuri and A. Murugeasan. Fabrication and characterization of strontium substituted chitosan modify hydroxyapatite for biomedical applications. Inorganic Chemistry Communications. 2022;142:109653. https://doi.org/10.1016/j.inoche.2022.109653.
  • M. B. Mobarak, M. N. Uddin, F. Chowdhury, M. S. Hossain, M. Mahmud, S. Sarkar, N. I. Tanvir and S. Ahmed. Solid-state synthesis of poultry waste derived hydroxyapatite: Effect of calcination temperature on crystallographic parameters and biomedical competency. Journal of Molecular Structure. 2024;1301:137321. https://doi.org/10.1016/j.molstruc.2023.137321.
  • A. Fihri, C. Len, R. S. Varma and A. Solhy. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews. 2017;347:48-76. http://dx.doi.org/10.1016/j.ccr.2017.06.009.
  • D. E. Radulescu, O. R. Vasile, E. Andronescu and A. Ficai. Latest research of doped hydroxyapatite for bone tissue engineering. International Journal of Molecular Sciences. 2023;24(17):13157. https://doi.org/10.3390/ijms241713157.
  • L. Ibrahimzade, O. Kaygili, S. Dundar, T. Ates, S. V. Dorozhkin, N. Bulut, S. Koytepe, F. Ercan, C. Gürses and A. H. Hssain. Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal of Molecular Structure. 2021;1240:130557. https://doi.org/10.1016/j.molstruc.2021.130557. B. Demir, E. Karacaoglu and E. Ayas. Synthesis and characterization of luminescent Er3+-doped natural fluorapatite. ECS Journal of Solid State Science and Technology, 2022;11(10):106001. https://doi.org/10.1016/j.ceramint.2020.03.152.
  • F. İsen, O. Kaygili, N. Bulut, T. Ates, F. Osmanlıoğlu, S. Keser, B. Tatar, İ. Özcan, B. Ates, F. Ercan, I. Ercan and R. O. Kareem. Experimental and theoretical characterization of Dy-doped hydroxyapatites. Journal of the Australian Ceramic Society. 2023;59(4):849-864. https://doi.org/10.1007/s41779-023-00878-8.
  • M. Megha, A. Joy, G. Unnikrishnan, M. Jayan, M. Haris, J. Thomas, E. Kolanthai and S. Muthuswamy. Structural and biological evaluation of novel vanadium/Yttrium co-doped hydroxyapatite for bone tissue engineering applications. Journal of Alloys and Compounds. 2023;967:171697. https://doi.org/10.1016/j.jallcom.2023.171697.
  • L. Duta and V. Grumezescu. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials. 2024;17:640. https://doi.org/10.3390/ma17030640.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. https://doi.org/10.1016/j.matchemphys.2021.125444.
  • Y. Wang and T. Wang. An amorphous Zn-doped hydroxyapatite with high ultraviolet reflectivity. Materials Letters. 2024;362:136036. https://doi.org/10.1016/j.matlet.2024.136036.
  • M. S. Hossain, S. Tarannum, M. Kawsar, N. M. Bahadur and S. Ahmed. Synthesis of pure and Cd-doped hydroxyapatite for the photo-catalytic degradation of Amoxicillin and Ciprofloxacin: Crystallographic characterization using XRD. Journal of Hazardous Materials Advances. 2024;13:100406. https://doi.org/10.1016/j.hazadv.2024.100406.
  • L. Yan, X. Wei, Z. Zhang, C. Wang, Y. Jia, L. Wang, Y. Yan and X. Fan. Cobalt-doped hydroxyapatite for bone tissue engineering: Synthesis, characterization and in vitro biocompatibility of real-time extract. Materials Today Communications. 2024;38:108554. https://doi.org/10.1016/j.mtcomm.2024.108554.
  • G. Bansal, R. K. Gautam, J. P. Misra and A. Mishra. Synthesis and Characterization of Poly (Methyl Methacrylate)/Silver-Doped Hydroxyapatite Dip Coating on Ti6Al4V. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;689:133662. https://doi.org/10.1016/j.colsurfa.2024.133662.
  • W. Korzeniewski and A. Witkowska. Dissolution of Nb-doped hydroxyapatite prepared via low-temperature mechanochemical method: Spectroscopy studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2023;545:165149. https://doi.org/10.1016/j.nimb.2023.165149.
  • V. H. Pham, H. N. Van, P. D. Tam and H. N. T. Ha. A novel 1540 nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method. Materials Letters. 2016;167:145-147. http://dx.doi.org/10.1016/j.matlet.2016.01.002.
  • S. Mondal, V. T. Nguyen, S. Park, J. Choi, L. H. Tran, M. Yi, J. H. Shin, C.-Y. Lee and J. Oh. Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceramics International. 2020;46(10):16020-16031. https://doi.org/10.1016/j.ceramint.2020.03.152.
  • Y. Q. Tang, Q. Y. Wang, Q. F. Ke, C. Q. Zhang, J. J. Guan and Y. P. Guo. Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chemical Engineering Journal. 2020;387:124166. https://doi.org/10.1016/j.cej.2020.124166.
  • M. V. Nardi, M. Timpel, E. Biondani, R. Ceccato, A. Chiappini and S. Dirè. Synthesis and characterization of Nd3+-Yb3+ doped hydroxyapatite nanoparticles. Optical Materials: X. 2021;12:100118. https://doi.org/10.1016/j.omx.2021.100118.
  • R. K. Chadha, K. L. Singh, C. Sharma, A. P. Singh and V. Naithani. Structural and bioactive investigation of Sr and Sr-Zr doped hydroxyapatite: A comparative study. Materials Chemistry and Physics. 2024;314:128829. https://doi.org/10.1016/j.matchemphys.2023.128829.
  • K. Janakiraman and S. Swamiappan. Synthesis of hydroxyapatite via sol–gel combustion route: A comparative analysis of single and mixed fuels. Materials Letters. 2024;357:135731. https://doi.org/10.1016/j.matlet.2023.135731.
  • A. Prihanto, S. Muryanto, R. Ismail, J. Jamari and A. P. Bayuseno. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels. Inorganic Chemistry Communications. 2023;157:111301. https://doi.org/10.1016/j.inoche.2023.111301.
  • J. Indira and K. S. Malathi. Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications. Materials Today: Proceedings. 2022;51:1765-1769. https://doi.org/10.1016/j.matpr.2021.03.028.
  • V. C. A. Prakash, I. Venda and V. Thamizharasi. Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method. Materials Today: Proceedings. 2022;51:1788-1792. https://doi.org/10.1016/j.matpr.2021.05.059.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56:781-784. https://doi.org/10.1016/j.matpr.2022.02.256.
  • H. Agougui, N. Sebeia, M. Jabli and Y. El-Ghoul. Synthesis of hydroxyapatite-sodium metasilicate via double decomposition method: Characterization and application to the removal of methylene blue. Inorganic Chemistry Communications. 2021;133:108986. https://doi.org/10.1016/j.inoche.2021.108986.
  • N. M. Pu'ad, J. Alipal, H. Z. Abdullah, M. I. Idris and T. C. Lee. Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Materials Today: Proceedings. 2021;42:172-177. https://doi.org/10.1016/j.matpr.2020.11.276.
  • S. López-Ortiz, D. Mendoza-Anaya, D. Sánchez-Campos, M. E. Fernandez-García, E. Salinas-Rodríguez, M. I. Reyes-Valderrama and V. Rodríguez-Lugo. The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. Journal of Nanomaterials. 2020;2020:5912592. https://doi.org/10.1155/2020/5912592.
  • D. Sánchez-Campos, M. I. Reyes Valderrama, S. López-Ortíz, D. Salado-Leza, M. E. Fernández-García, D. Mendoza-Anaya, E. Salinas-Rodríguez and V. Rodríguez-Lugo. Modulated monoclinic hydroxyapatite: The effect of pH in the microwave assisted method. Minerals. 2021;11(3):314. https://doi.org/10.3390/min11030314.
  • I. H. Lee, J. A. Lee, J. H. Lee, Y. W. Heo and J. J. Kim. Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. Journal of the Korean Ceramic Society. 2020;57:56-64. https://doi.org/10.1007/s43207-019-00004-0.
  • V. Rodríguez-Lugo, T. V. K. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L. S. Villaseñor Cerón, M. I. Reyes-Valderrama and E. Salinas-Rodríguez. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. Royal Society open science. 2018;5(8):180962. http://dx.doi.org/10.1098/rsos.180962.
  • A. A. Awan, U. Liaqat and Z. Hussain. The effect of pH on the morphological transformation of nanocrystalline hydroxyapatite during wet chemical synthesis. Journal of the Korean Ceramic Society. 2023;60(6):1010-1027. https://doi.org/10.1007/s43207-023-00324-2.
  • R. Sun, K. Chen, Z. Liao and N. Meng. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures. Materials Research Bulletin. 2013;48(3):1143-1147. http://dx.doi.org/10.1016/j.materresbull.2012.12.013.
  • K. Chuprunov, A. Yudin, D. Lysov, E. Kolesnikov, D. Kuznetsov, D. Leybo, I. Ilinykh and A. Godymchuk. The pH level influence on hydroxyapatite phase composition synthesized with hydrothermal method. In IOP Conference Series: Materials Science and Engineering. 2020;731:012023. https://doi.org/10.1088/1757-899X/731/1/012023.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • H. G. Ateş, O. Kaygili, N. Bulut, F. Osmanlıoğlu, S. Keser, B. Tatar, B. K. Mahmood, T. Ates, F. Ercan, I. Ercan, B. Ates and İ. Özcan. Investigation of the structural, thermal, magnetic and cell viability properties of Ce/Sr co-doped hydroxyapatites. Journal of Molecular Structure. 2023;1283:135318. https://doi.org/10.1016/j.molstruc.2023.135318.
  • N. Charczuk, N. Nowak and R. J. Wiglusz. Synthesis and investigation of physicochemical properties and biocompatibility of phosphate–vanadate hydroxyapatite Co-doped with Tb3+ and Sr2+ ions. Nanomaterials. 2023;13(3):457. https://doi.org/10.3390/nano13030457.
  • M. E. Zarif, S. A. Yehia-Alexe, B. Bita, I. Negut, C. Locovei and A. Groza. Calcium phosphates–chitosan composite layers obtained by combining radio-frequency magnetron sputtering and matrix-assisted pulsed laser evaporation techniques. Polymers. 2022;14(23):5241. https://doi.org/10.3390/polym14235241.
  • R. L. Frost, Y. Xi, R. Scholz, F. M. Belotti and A. Lopez. Infrared and Raman spectroscopic characterization of the phosphate mineral fairfieldite–Ca2 (Mn2+, Fe2+) 2 (PO4) 2· 2 (H2O). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;106:216-223. https://doi.org/10.1016/j.saa.2013.01.008.
  • M. S. Hossain and S. Ahmed. FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: A comparison of vibrational motion to reflection. RSC advances. 2023;13(21):14625-14630. https://doi.org/10.1039/D3RA02580B.
  • O. M. Gomez-Vazquez, L. R. Bernal-Alvarez, J. I. Velasquez-Miranda and M. E. Rodriguez-Garcia. Effects of Temperature on the Physicochemical Properties of Bioinspired, Synthetic, and Biogenic Hydroxyapatites Calcinated under the Same Thermal Conditions. Nanomaterials. 2023;13(17):2385. https://doi.org/10.3390/nano13172385.
  • I. Uysal, F. Severcan and Z. Evis. Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceramics International. 2013;39(7):7727-7733. https://doi.org/10.1016/j.ceramint.2013.03.029.

The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite

Yıl 2024, , 11 - 16, 03.06.2024
https://doi.org/10.54565/jphcfum.1456331

Öz

The present study includes a detailed investigation of the effects of various pH conditions used in the synthesis on the structural properties of hydroxyapatite (HAp) co-doped with Er and Yb at a constant value. In this context, we changed the pH value from 8.5 to 11.0 with the steps of 0.5 in the synthesis. It was seen that the different pH causes significant variations in the crystallite size, lattice parameters, unit cell volume, and morphology. The pH value plays a key role in the synthesis of Er/Yb co-doped HAps.

Kaynakça

  • D. S. Gomes, A. M. C. Santos, G. A. Neves and R. R. Menezes. A brief review on hydroxyapatite production and use in biomedicine. Cerâmica. 2019;65:282-302. https://doi.org/10.1590/0366-69132019653742706.
  • A. Haider, S. Haider, S. S. Han and I. K. Kang. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. Rsc Advances 2017;7(13):7442-7458. https://doi.org/10.1039/C6RA26124H.
  • G. Molino, M. C. Palmieri, G. Montalbano, S. Fiorilli and C. Vitale-Brovarone. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review. Biomedical Materials. 2020;15(2):022001. https://doi.org/10.1088/1748-605X/ab5f1a.
  • A. A. Majhooll, I., Zainol, C. N. A., Jaafar, A., Ha, M. Z., Hassan, M., Mudhafar, A. A. Majhool and A. Asaad. A brief review on biomedical applications of hydroxyapatite use as fillers in polymer. J. Chem. 2019;13:112-119. https://doi.org/10.17265/1934-7375/2019.03.004.
  • X. Wang and Y. Han. Dependence of predicted bulk properties of hexagonal hydroxyapatite on exchange–correlation functional. Computational Materials Science. 2023;224:112153. https://doi.org/10.1016/j.commatsci.2023.112153.
  • J. Kamieniak, P. J. Kelly, C. E. Banks and A. M. Doyle. Mechanical, pH and thermal stability of mesoporous hydroxyapatite. Journal of Inorganic and Organometallic Polymers and Materials. 2018;28:84-91. https://doi.org/10.1007/s10904-017-0652-3.
  • M. S. F. Hussin, H. Z. Abdullah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications—A review. Heliyon. 2022;8(8):e10356. https://doi.org/10.1016/j.heliyon.2022.e10356.
  • P. M. Sivakumar, A. A. Yetisgin, S. B. Sahin, E. Demir and S. Cetinel. Enhanced properties of nickel–silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation. Environmental Research. 2023;238:117131. https://doi.org/10.1016/j.envres.2023.117131.
  • M. A. Goldberg, M. R. Gafurov, O. N. Makshakova, S. V. Smirnov, A. S. Fomin, F. F. Murzakhanov and V. S. Komlev. Peculiarities of charge compensation in lithium-doped hydroxyapatite. Heliyon. 2024;10(4):e25291. https://doi.org/10.1016/j.heliyon.2024.e25291.
  • V. Murugesan, M. Vaiyapuri and A. Murugeasan. Fabrication and characterization of strontium substituted chitosan modify hydroxyapatite for biomedical applications. Inorganic Chemistry Communications. 2022;142:109653. https://doi.org/10.1016/j.inoche.2022.109653.
  • M. B. Mobarak, M. N. Uddin, F. Chowdhury, M. S. Hossain, M. Mahmud, S. Sarkar, N. I. Tanvir and S. Ahmed. Solid-state synthesis of poultry waste derived hydroxyapatite: Effect of calcination temperature on crystallographic parameters and biomedical competency. Journal of Molecular Structure. 2024;1301:137321. https://doi.org/10.1016/j.molstruc.2023.137321.
  • A. Fihri, C. Len, R. S. Varma and A. Solhy. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews. 2017;347:48-76. http://dx.doi.org/10.1016/j.ccr.2017.06.009.
  • D. E. Radulescu, O. R. Vasile, E. Andronescu and A. Ficai. Latest research of doped hydroxyapatite for bone tissue engineering. International Journal of Molecular Sciences. 2023;24(17):13157. https://doi.org/10.3390/ijms241713157.
  • L. Ibrahimzade, O. Kaygili, S. Dundar, T. Ates, S. V. Dorozhkin, N. Bulut, S. Koytepe, F. Ercan, C. Gürses and A. H. Hssain. Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal of Molecular Structure. 2021;1240:130557. https://doi.org/10.1016/j.molstruc.2021.130557. B. Demir, E. Karacaoglu and E. Ayas. Synthesis and characterization of luminescent Er3+-doped natural fluorapatite. ECS Journal of Solid State Science and Technology, 2022;11(10):106001. https://doi.org/10.1016/j.ceramint.2020.03.152.
  • F. İsen, O. Kaygili, N. Bulut, T. Ates, F. Osmanlıoğlu, S. Keser, B. Tatar, İ. Özcan, B. Ates, F. Ercan, I. Ercan and R. O. Kareem. Experimental and theoretical characterization of Dy-doped hydroxyapatites. Journal of the Australian Ceramic Society. 2023;59(4):849-864. https://doi.org/10.1007/s41779-023-00878-8.
  • M. Megha, A. Joy, G. Unnikrishnan, M. Jayan, M. Haris, J. Thomas, E. Kolanthai and S. Muthuswamy. Structural and biological evaluation of novel vanadium/Yttrium co-doped hydroxyapatite for bone tissue engineering applications. Journal of Alloys and Compounds. 2023;967:171697. https://doi.org/10.1016/j.jallcom.2023.171697.
  • L. Duta and V. Grumezescu. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials. 2024;17:640. https://doi.org/10.3390/ma17030640.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. https://doi.org/10.1016/j.matchemphys.2021.125444.
  • Y. Wang and T. Wang. An amorphous Zn-doped hydroxyapatite with high ultraviolet reflectivity. Materials Letters. 2024;362:136036. https://doi.org/10.1016/j.matlet.2024.136036.
  • M. S. Hossain, S. Tarannum, M. Kawsar, N. M. Bahadur and S. Ahmed. Synthesis of pure and Cd-doped hydroxyapatite for the photo-catalytic degradation of Amoxicillin and Ciprofloxacin: Crystallographic characterization using XRD. Journal of Hazardous Materials Advances. 2024;13:100406. https://doi.org/10.1016/j.hazadv.2024.100406.
  • L. Yan, X. Wei, Z. Zhang, C. Wang, Y. Jia, L. Wang, Y. Yan and X. Fan. Cobalt-doped hydroxyapatite for bone tissue engineering: Synthesis, characterization and in vitro biocompatibility of real-time extract. Materials Today Communications. 2024;38:108554. https://doi.org/10.1016/j.mtcomm.2024.108554.
  • G. Bansal, R. K. Gautam, J. P. Misra and A. Mishra. Synthesis and Characterization of Poly (Methyl Methacrylate)/Silver-Doped Hydroxyapatite Dip Coating on Ti6Al4V. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;689:133662. https://doi.org/10.1016/j.colsurfa.2024.133662.
  • W. Korzeniewski and A. Witkowska. Dissolution of Nb-doped hydroxyapatite prepared via low-temperature mechanochemical method: Spectroscopy studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2023;545:165149. https://doi.org/10.1016/j.nimb.2023.165149.
  • V. H. Pham, H. N. Van, P. D. Tam and H. N. T. Ha. A novel 1540 nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method. Materials Letters. 2016;167:145-147. http://dx.doi.org/10.1016/j.matlet.2016.01.002.
  • S. Mondal, V. T. Nguyen, S. Park, J. Choi, L. H. Tran, M. Yi, J. H. Shin, C.-Y. Lee and J. Oh. Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceramics International. 2020;46(10):16020-16031. https://doi.org/10.1016/j.ceramint.2020.03.152.
  • Y. Q. Tang, Q. Y. Wang, Q. F. Ke, C. Q. Zhang, J. J. Guan and Y. P. Guo. Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chemical Engineering Journal. 2020;387:124166. https://doi.org/10.1016/j.cej.2020.124166.
  • M. V. Nardi, M. Timpel, E. Biondani, R. Ceccato, A. Chiappini and S. Dirè. Synthesis and characterization of Nd3+-Yb3+ doped hydroxyapatite nanoparticles. Optical Materials: X. 2021;12:100118. https://doi.org/10.1016/j.omx.2021.100118.
  • R. K. Chadha, K. L. Singh, C. Sharma, A. P. Singh and V. Naithani. Structural and bioactive investigation of Sr and Sr-Zr doped hydroxyapatite: A comparative study. Materials Chemistry and Physics. 2024;314:128829. https://doi.org/10.1016/j.matchemphys.2023.128829.
  • K. Janakiraman and S. Swamiappan. Synthesis of hydroxyapatite via sol–gel combustion route: A comparative analysis of single and mixed fuels. Materials Letters. 2024;357:135731. https://doi.org/10.1016/j.matlet.2023.135731.
  • A. Prihanto, S. Muryanto, R. Ismail, J. Jamari and A. P. Bayuseno. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels. Inorganic Chemistry Communications. 2023;157:111301. https://doi.org/10.1016/j.inoche.2023.111301.
  • J. Indira and K. S. Malathi. Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications. Materials Today: Proceedings. 2022;51:1765-1769. https://doi.org/10.1016/j.matpr.2021.03.028.
  • V. C. A. Prakash, I. Venda and V. Thamizharasi. Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method. Materials Today: Proceedings. 2022;51:1788-1792. https://doi.org/10.1016/j.matpr.2021.05.059.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56:781-784. https://doi.org/10.1016/j.matpr.2022.02.256.
  • H. Agougui, N. Sebeia, M. Jabli and Y. El-Ghoul. Synthesis of hydroxyapatite-sodium metasilicate via double decomposition method: Characterization and application to the removal of methylene blue. Inorganic Chemistry Communications. 2021;133:108986. https://doi.org/10.1016/j.inoche.2021.108986.
  • N. M. Pu'ad, J. Alipal, H. Z. Abdullah, M. I. Idris and T. C. Lee. Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Materials Today: Proceedings. 2021;42:172-177. https://doi.org/10.1016/j.matpr.2020.11.276.
  • S. López-Ortiz, D. Mendoza-Anaya, D. Sánchez-Campos, M. E. Fernandez-García, E. Salinas-Rodríguez, M. I. Reyes-Valderrama and V. Rodríguez-Lugo. The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. Journal of Nanomaterials. 2020;2020:5912592. https://doi.org/10.1155/2020/5912592.
  • D. Sánchez-Campos, M. I. Reyes Valderrama, S. López-Ortíz, D. Salado-Leza, M. E. Fernández-García, D. Mendoza-Anaya, E. Salinas-Rodríguez and V. Rodríguez-Lugo. Modulated monoclinic hydroxyapatite: The effect of pH in the microwave assisted method. Minerals. 2021;11(3):314. https://doi.org/10.3390/min11030314.
  • I. H. Lee, J. A. Lee, J. H. Lee, Y. W. Heo and J. J. Kim. Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. Journal of the Korean Ceramic Society. 2020;57:56-64. https://doi.org/10.1007/s43207-019-00004-0.
  • V. Rodríguez-Lugo, T. V. K. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L. S. Villaseñor Cerón, M. I. Reyes-Valderrama and E. Salinas-Rodríguez. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. Royal Society open science. 2018;5(8):180962. http://dx.doi.org/10.1098/rsos.180962.
  • A. A. Awan, U. Liaqat and Z. Hussain. The effect of pH on the morphological transformation of nanocrystalline hydroxyapatite during wet chemical synthesis. Journal of the Korean Ceramic Society. 2023;60(6):1010-1027. https://doi.org/10.1007/s43207-023-00324-2.
  • R. Sun, K. Chen, Z. Liao and N. Meng. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures. Materials Research Bulletin. 2013;48(3):1143-1147. http://dx.doi.org/10.1016/j.materresbull.2012.12.013.
  • K. Chuprunov, A. Yudin, D. Lysov, E. Kolesnikov, D. Kuznetsov, D. Leybo, I. Ilinykh and A. Godymchuk. The pH level influence on hydroxyapatite phase composition synthesized with hydrothermal method. In IOP Conference Series: Materials Science and Engineering. 2020;731:012023. https://doi.org/10.1088/1757-899X/731/1/012023.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • H. G. Ateş, O. Kaygili, N. Bulut, F. Osmanlıoğlu, S. Keser, B. Tatar, B. K. Mahmood, T. Ates, F. Ercan, I. Ercan, B. Ates and İ. Özcan. Investigation of the structural, thermal, magnetic and cell viability properties of Ce/Sr co-doped hydroxyapatites. Journal of Molecular Structure. 2023;1283:135318. https://doi.org/10.1016/j.molstruc.2023.135318.
  • N. Charczuk, N. Nowak and R. J. Wiglusz. Synthesis and investigation of physicochemical properties and biocompatibility of phosphate–vanadate hydroxyapatite Co-doped with Tb3+ and Sr2+ ions. Nanomaterials. 2023;13(3):457. https://doi.org/10.3390/nano13030457.
  • M. E. Zarif, S. A. Yehia-Alexe, B. Bita, I. Negut, C. Locovei and A. Groza. Calcium phosphates–chitosan composite layers obtained by combining radio-frequency magnetron sputtering and matrix-assisted pulsed laser evaporation techniques. Polymers. 2022;14(23):5241. https://doi.org/10.3390/polym14235241.
  • R. L. Frost, Y. Xi, R. Scholz, F. M. Belotti and A. Lopez. Infrared and Raman spectroscopic characterization of the phosphate mineral fairfieldite–Ca2 (Mn2+, Fe2+) 2 (PO4) 2· 2 (H2O). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;106:216-223. https://doi.org/10.1016/j.saa.2013.01.008.
  • M. S. Hossain and S. Ahmed. FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: A comparison of vibrational motion to reflection. RSC advances. 2023;13(21):14625-14630. https://doi.org/10.1039/D3RA02580B.
  • O. M. Gomez-Vazquez, L. R. Bernal-Alvarez, J. I. Velasquez-Miranda and M. E. Rodriguez-Garcia. Effects of Temperature on the Physicochemical Properties of Bioinspired, Synthetic, and Biogenic Hydroxyapatites Calcinated under the Same Thermal Conditions. Nanomaterials. 2023;13(17):2385. https://doi.org/10.3390/nano13172385.
  • I. Uysal, F. Severcan and Z. Evis. Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceramics International. 2013;39(7):7727-7733. https://doi.org/10.1016/j.ceramint.2013.03.029.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Bast Ahmed Mohammed 0009-0004-3774-633X

Tankut Ateş 0000-0002-4519-2953

Bahroz Kareem Mahmood 0000-0003-2615-2662

Rebaz Obaıd Kareem 0000-0001-6273-1309

Serhat Keser 0000-0002-9678-1053

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygılı 0000-0002-2321-1455

Yayımlanma Tarihi 3 Haziran 2024
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 30 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Mohammed, B. A., Ateş, T., Mahmood, B. K., Obaıd Kareem, R., vd. (2024). The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite. Journal of Physical Chemistry and Functional Materials, 7(1), 11-16. https://doi.org/10.54565/jphcfum.1456331
AMA Mohammed BA, Ateş T, Mahmood BK, Obaıd Kareem R, Keser S, Bulut N, Kaygılı O. The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite. Journal of Physical Chemistry and Functional Materials. Haziran 2024;7(1):11-16. doi:10.54565/jphcfum.1456331
Chicago Mohammed, Bast Ahmed, Tankut Ateş, Bahroz Kareem Mahmood, Rebaz Obaıd Kareem, Serhat Keser, Niyazi Bulut, ve Omer Kaygılı. “The Effects of PH on the Morphology and Structural Properties of Er/Yb Co-Doped Hydroxyapatite”. Journal of Physical Chemistry and Functional Materials 7, sy. 1 (Haziran 2024): 11-16. https://doi.org/10.54565/jphcfum.1456331.
EndNote Mohammed BA, Ateş T, Mahmood BK, Obaıd Kareem R, Keser S, Bulut N, Kaygılı O (01 Haziran 2024) The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite. Journal of Physical Chemistry and Functional Materials 7 1 11–16.
IEEE B. A. Mohammed, T. Ateş, B. K. Mahmood, R. Obaıd Kareem, S. Keser, N. Bulut, ve O. Kaygılı, “The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite”, Journal of Physical Chemistry and Functional Materials, c. 7, sy. 1, ss. 11–16, 2024, doi: 10.54565/jphcfum.1456331.
ISNAD Mohammed, Bast Ahmed vd. “The Effects of PH on the Morphology and Structural Properties of Er/Yb Co-Doped Hydroxyapatite”. Journal of Physical Chemistry and Functional Materials 7/1 (Haziran 2024), 11-16. https://doi.org/10.54565/jphcfum.1456331.
JAMA Mohammed BA, Ateş T, Mahmood BK, Obaıd Kareem R, Keser S, Bulut N, Kaygılı O. The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite. Journal of Physical Chemistry and Functional Materials. 2024;7:11–16.
MLA Mohammed, Bast Ahmed vd. “The Effects of PH on the Morphology and Structural Properties of Er/Yb Co-Doped Hydroxyapatite”. Journal of Physical Chemistry and Functional Materials, c. 7, sy. 1, 2024, ss. 11-16, doi:10.54565/jphcfum.1456331.
Vancouver Mohammed BA, Ateş T, Mahmood BK, Obaıd Kareem R, Keser S, Bulut N, Kaygılı O. The effects of pH on the morphology and structural properties of Er/Yb co-doped hydroxyapatite. Journal of Physical Chemistry and Functional Materials. 2024;7(1):11-6.