Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 1, 32 - 36, 19.07.2019

Öz

Kaynakça

  • References1. Arnold, F.E. and R. Van Deusen, Preparation and properties of high molecular weight, soluble oxobenz [de] imidazobenzimidazoisoquinoline ladder polymer. Macromolecules, 1969. 2(5): p. 497-502.2. Arnold, F. and R. Van Deusen, Unusual film‐forming properties of aromatic heterocyclic ladder polymers. Journal of Applied Polymer Science, 1971. 15(8): p. 2035-2047.3. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.4. Wilbourn, K. and R.W. Murray, The dc redox versus electronic conductivity of the ladder polymer poly (benzimidazobenzophenanthroline). The Journal of Physical Chemistry, 1988. 92(12): p. 3642-3648.5. Van Deusen, R., Benzimidazo‐benzophenanthroline polymers. Journal of Polymer Science Part B: Polymer Letters, 1966. 4(3): p. 211-214.6. Mai, Y.-W. and Z.-Z. Yu, Polymer nanocomposites. 2006: Woodhead publishing.7. Yohannes, T., et al., Multiple electrochemical doping-induced insulator-to-conductor transitions observed in the conjugated ladder polymer polybenzimidazobenzophenanthroline (BBL). The Journal of Physical Chemistry B, 2000. 104(40): p. 9430-9437.8. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews, 2009. 109(11): p. 5868-5923.9. Jenekhe, S.A., et al., Photoinduced electron transfer in binary blends of conjugated polymers. Chemistry of materials, 1996. 8(10): p. 2401-2404.10. Jenekhe, S.A. and S. Yi, Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers. Advanced Materials, 2000. 12(17): p. 1274-1278.11. Babel, A., et al., High electron mobility and ambipolar charge transport in binary blends of donor and acceptor conjugated polymers. Advanced Functional Materials, 2007. 17(14): p. 2542-2549.12. Chen, X.L. and S.A. Jenekhe, Bipolar conducting polymers: Blends of p-type polypyrrole and an n-type ladder polymer. Macromolecules, 1997. 30(6): p. 1728-1733.13. Wilbourn, K. and R.W. Murray, The electrochemical doping reactions of the conducting ladder polymer benzimidazobenzophenanthroline (BBL). Macromolecules, 1988. 21(1): p. 89-96.14. Benková, Z., I. Černušák, and P. Zahradník, Electric properties of formaldehyde, thioformaldehyde, urea, formamide, and thioformamide—Post‐HF and DFT study. International Journal of Quantum Chemistry, 2007. 107(11): p. 2133-2152.15. Chatfield, D., Christopher J. Cramer: Essentials of Computational Chemistry: Theories and Models. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2002. 108(6): p. 367-368.16. Baerends, E., D. Ellis, and P. Ros, Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chemical Physics, 1973. 2(1): p. 41-51.17. Della Sala, F. and A. Görling, Efficient localized Hartree–Fock methods as effective exact-exchange Kohn–Sham methods for molecules. The Journal of Chemical Physics, 2001. 115(13): p. 5718-5732.18. Gilbert, T., Hohenberg-Kohn theorem for nonlocal external potentials. Physical Review B, 1975. 12(6): p. 2111.19. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.20. Becke, A.D., Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of chemical physics, 1996. 104(3): p. 1040-1046.21. Slater, J.C., A simplification of the Hartree-Fock method. Physical review, 1951. 81(3): p. 385.22. Feller, D. and E.R. Davidson, Basis sets for ab initio molecular orbital calculations and intermolecular interactions. Reviews in computational chemistry, 1990: p. 1-43.23. Snijders, J., P. Vernooijs, and E. Baerends, Roothaan-Hartree-Fock-Slater atomic wave functions: single-zeta, double-zeta, and extended Slater-type basis sets for 87Fr-103Lr. Atomic Data and Nuclear Data Tables, 1981. 26(6): p. 483-509.24. Nielsen, M.A. and I. Chuang, Quantum computation and quantum information. 2002, AAPT.25. Hehre, W.J., R. Ditchfield, and J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 1972. 56(5): p. 2257-2261.

Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets

Yıl 2019, Cilt: 2 Sayı: 1, 32 - 36, 19.07.2019

Öz

Nowadays the most important
method and stimulation approximation is Density functional theory and
Hartree-Fock approximation in quantum mechanical theory used in chemistry and
physics. For explore the electronic construction of many-body frameworks,
specific molecules, particles, atoms and the dense stages with this hypothesis.
Quantum computational theory depended on electron density. the possessions of a
many-electron framework can be controlled by utilizing functionals, for example,
functions of another function. Hypothetical examinations were performed
utilizing the Hartree-Fock hypothesis and Density Functional Theory at B3LYP
dimension of hypothesis at 3-21G, 6-31G* and 6-311G in the Gaussian program.
The assimilation and photoconduction properties of the conjugated polymer benzimidazobenzophenanthroline.
BBL, are considered. The enduring state photoconductivity was estimated as a
component of photon energy, electric field, temperature. The photocurrent
reaction as a component of energy goes before the ingestion and demonstrates an
expansive tail around the bandgap as opposed to the sharp absorption edge close
1.9 eV.

Kaynakça

  • References1. Arnold, F.E. and R. Van Deusen, Preparation and properties of high molecular weight, soluble oxobenz [de] imidazobenzimidazoisoquinoline ladder polymer. Macromolecules, 1969. 2(5): p. 497-502.2. Arnold, F. and R. Van Deusen, Unusual film‐forming properties of aromatic heterocyclic ladder polymers. Journal of Applied Polymer Science, 1971. 15(8): p. 2035-2047.3. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.4. Wilbourn, K. and R.W. Murray, The dc redox versus electronic conductivity of the ladder polymer poly (benzimidazobenzophenanthroline). The Journal of Physical Chemistry, 1988. 92(12): p. 3642-3648.5. Van Deusen, R., Benzimidazo‐benzophenanthroline polymers. Journal of Polymer Science Part B: Polymer Letters, 1966. 4(3): p. 211-214.6. Mai, Y.-W. and Z.-Z. Yu, Polymer nanocomposites. 2006: Woodhead publishing.7. Yohannes, T., et al., Multiple electrochemical doping-induced insulator-to-conductor transitions observed in the conjugated ladder polymer polybenzimidazobenzophenanthroline (BBL). The Journal of Physical Chemistry B, 2000. 104(40): p. 9430-9437.8. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews, 2009. 109(11): p. 5868-5923.9. Jenekhe, S.A., et al., Photoinduced electron transfer in binary blends of conjugated polymers. Chemistry of materials, 1996. 8(10): p. 2401-2404.10. Jenekhe, S.A. and S. Yi, Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers. Advanced Materials, 2000. 12(17): p. 1274-1278.11. Babel, A., et al., High electron mobility and ambipolar charge transport in binary blends of donor and acceptor conjugated polymers. Advanced Functional Materials, 2007. 17(14): p. 2542-2549.12. Chen, X.L. and S.A. Jenekhe, Bipolar conducting polymers: Blends of p-type polypyrrole and an n-type ladder polymer. Macromolecules, 1997. 30(6): p. 1728-1733.13. Wilbourn, K. and R.W. Murray, The electrochemical doping reactions of the conducting ladder polymer benzimidazobenzophenanthroline (BBL). Macromolecules, 1988. 21(1): p. 89-96.14. Benková, Z., I. Černušák, and P. Zahradník, Electric properties of formaldehyde, thioformaldehyde, urea, formamide, and thioformamide—Post‐HF and DFT study. International Journal of Quantum Chemistry, 2007. 107(11): p. 2133-2152.15. Chatfield, D., Christopher J. Cramer: Essentials of Computational Chemistry: Theories and Models. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2002. 108(6): p. 367-368.16. Baerends, E., D. Ellis, and P. Ros, Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chemical Physics, 1973. 2(1): p. 41-51.17. Della Sala, F. and A. Görling, Efficient localized Hartree–Fock methods as effective exact-exchange Kohn–Sham methods for molecules. The Journal of Chemical Physics, 2001. 115(13): p. 5718-5732.18. Gilbert, T., Hohenberg-Kohn theorem for nonlocal external potentials. Physical Review B, 1975. 12(6): p. 2111.19. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.20. Becke, A.D., Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of chemical physics, 1996. 104(3): p. 1040-1046.21. Slater, J.C., A simplification of the Hartree-Fock method. Physical review, 1951. 81(3): p. 385.22. Feller, D. and E.R. Davidson, Basis sets for ab initio molecular orbital calculations and intermolecular interactions. Reviews in computational chemistry, 1990: p. 1-43.23. Snijders, J., P. Vernooijs, and E. Baerends, Roothaan-Hartree-Fock-Slater atomic wave functions: single-zeta, double-zeta, and extended Slater-type basis sets for 87Fr-103Lr. Atomic Data and Nuclear Data Tables, 1981. 26(6): p. 483-509.24. Nielsen, M.A. and I. Chuang, Quantum computation and quantum information. 2002, AAPT.25. Hehre, W.J., R. Ditchfield, and J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 1972. 56(5): p. 2257-2261.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Dyari Mamand

Yayımlanma Tarihi 19 Temmuz 2019
Gönderilme Tarihi 10 Temmuz 2019
Kabul Tarihi 16 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Mamand, D. (2019). Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials, 2(1), 32-36.
AMA Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. Temmuz 2019;2(1):32-36.
Chicago Mamand, Dyari. “Determination the Band Gap Energy of Poly Benzimidazobenzophenanthroline and Comparison Between HF and DFT for Three Different Basis Sets”. Journal of Physical Chemistry and Functional Materials 2, sy. 1 (Temmuz 2019): 32-36.
EndNote Mamand D (01 Temmuz 2019) Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials 2 1 32–36.
IEEE D. Mamand, “Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets”, Journal of Physical Chemistry and Functional Materials, c. 2, sy. 1, ss. 32–36, 2019.
ISNAD Mamand, Dyari. “Determination the Band Gap Energy of Poly Benzimidazobenzophenanthroline and Comparison Between HF and DFT for Three Different Basis Sets”. Journal of Physical Chemistry and Functional Materials 2/1 (Temmuz 2019), 32-36.
JAMA Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2019;2:32–36.
MLA Mamand, Dyari. “Determination the Band Gap Energy of Poly Benzimidazobenzophenanthroline and Comparison Between HF and DFT for Three Different Basis Sets”. Journal of Physical Chemistry and Functional Materials, c. 2, sy. 1, 2019, ss. 32-36.
Vancouver Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2019;2(1):32-6.