Review
BibTex RIS Cite

A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations

Year 2021, Volume: 4 Issue: 2, 49 - 56, 08.12.2021
https://doi.org/10.54565/jphcfum.1018817

Abstract

Shape memory alloys have the thermoelastic phase transformation, known as shape memory characteristics, which make them be used in wide technological applications compared to other alloys. Ni-Ti based SMAs compared to the other families have more applications especially in the biomedical field since they have high biocompatibility, high strain recovery, flexibility, and antirust. In this work, the studies conducted for NiTiCu SMAs were reviewed. Additionally, different manufacturing techniques used by researchers have been explained. Different characteristics of the alloys have been clarified and compared with some other families.

References

  • [1] S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems. Avrupa Bilim ve Teknoloji Dergisi. (17):1014-1030.
  • [2] I. Mihálcz. Fundamental characteristics and design method for nickel-titanium shape memory alloy. Periodica Polytechnica Mechanical Engineering. 2001;45(1):75-86.
  • [3] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72(4):1664-1672.
  • [4] J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • [5] D. Stoeckel. Shape memory actuators for automotive applications. Materials & Design. 1990;11(6):302-307.
  • [6] I. N. Qader, M. Kök, F. Dağdelen and Y. Aydogdu. A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering. 2019;6(3):755-788. doi:https://doi.org/10.31202/ecjse.562177.
  • [7] F. Dagdelen, M. A. K. Aldalawi, M. Kok and I. N. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66. doi:https://doi.org/10.1140/epjp/i2019-12479-3.
  • [8] S. Nemat-Nasser, J. Yong Choi, W.-G. Guo, J. B. Isaacs and M. Taya. High strain-rate, small strain response of a NiTi shape-memory alloy. J. Eng. Mater. Technol. 2005;127(1):83-89.
  • [9] M. Es-Souni, M. Es-Souni and H. F. Brandies. On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys:: NiTi42 and NiTi42Cu7. Biomaterials. 2001;22(15):2153-2161.
  • [10] M. Es-Souni, M. Es-Souni and H. Fischer-Brandies. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Analytical and bioanalytical chemistry. 2005;381(3):557-567.
  • [11] M. Kok, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader and E. Özen. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2020;139:3405–3413. doi:https://doi.org/10.1007/s10973-019-08788-3.
  • [12] I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen and Y. Aydogdu. The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:903–910. doi:https://doi.org/10.1007/s40995-020-00876-6.
  • [13] F. Dagdelen, M. Kok and I. Qader. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International. 2019;25(6):1420-1427.
  • [14] E. Acar, M. Kok and I. Qader. Exploring surface oxidation behavior of NiTi–V alloys. The European Physical Journal Plus. 2020;135(1):58. doi:https://doi.org/10.1140/epjp/s13360-019-00087-y.
  • [15] S. Buytoz, F. Dagdelen, I. Qader, M. Kok and B. Tanyildizi. Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International. 2019:1-12. doi:https://doi.org/10.1007/s12540-019-00444-7.
  • [16] M. Kök, I. N. Qader, S. S. Mohammed, E. ÖNER, F. Dağdelen and Y. Aydogdu. Thermal Stability and Some Thermodynamics Analysis of Heat Treated Quaternary CuAlNiTa Shape Memory Alloy. Materials Research Express. 2020;7. doi:https://doi.org/10.1088/2053-1591/ab5bef.
  • [17] I. N. Qader, B. J. Abdullah, M. A. Hassan and P. H. Mahmood. Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires. Eurasian Journal of Science and Engineering. 2019;4(3):55-65. doi: https://doi.org/10.23918/eajse.v4i3sip55.
  • [18] W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials Today. 2010;13(7-8):54-61.
  • [19] K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
  • [20] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry. 2020;139(1):29-36. doi:https://doi.org/10.1007/s10973-019-08418-y.
  • [21] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020:1-9.
  • [22] N. Pandis and C. P. Bourauel. Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Seminars in Orthodontics. 2010;16(4):249-257. doi:10.1053/j.sodo.2010.06.003.
  • [23] C. W. Ng and A. S. Mahmud, editors. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire. AIP Conference Proceedings; 2017: AIP Publishing.
  • [24] D. J. Fernandes, R. V. Peres, A. M. Mendes and C. N. Elias. Understanding the shape-memory alloys used in orthodontics. ISRN dentistry. 2011;2011.
  • [25] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dagdelen and Y. Aydogdu. Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167–1175. doi:https://doi.org/10.1007/s40995-020-00909-0.
  • [26] I. N. Qader, M. Kok and Z. D. Cirak. The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry. 2020. doi:https://doi.org/10.1007/s10973-020-09758-w.
  • [27] M. Morakabati, M. Aboutalebi, S. Kheirandish, A. K. Taheri and S. Abbasi. Hot tensile properties and microstructural evolution of as cast NiTi and NiTiCu shape memory alloys. Materials & Design. 2011;32(1):406-413.
  • [28] T. H. Nam, T. Saburi, Y. Nakata and K. i. Shimizu. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Materials Transactions, JIM. 1990;31(12):1050-1056.
  • [29] O. Mercier and K. N. Melton. The substitution of Cu for Ni in NiTi shape memory alloys. Metallurgical Transactions A. 1979;10(3):387-389.
  • [30] J. Torralba. Improvement of mechanical and physical properties in powder metallurgy. 2014.
  • [31] A. Xavior. Processing of Graphene/CNT-Metal Powder. Powder Technology. 2018:45.
  • [32] A. P. Mouritz. Introduction to aerospace materials. Elsevier; 2012.
  • [33] A. A. Atiyah, A.-R. K. A. Ali and N. M. Dawood. Characterization of NiTi and NiTiCu porous shape memory alloys prepared by powder metallurgy (Part I). Arabian Journal for Science and Engineering. 2015;40(3):901-913.
  • [34] M. Lucaci, R. L. Orban, V. Tsakiris and D. Cirstea, editors. Shape memory alloys for MEMS components made by powder metallurgy processes. 2008 2nd Electronics System-Integration Technology Conference; 2008: IEEE.
  • [35] Y. A. Alshataif, S. Sivasankaran, F. A. Al-Mufadi, A. S. Alaboodi and H. R. Ammar. Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review. Metals and Materials International. 2019:1-35.
  • [36] Z. Zhang, J. Frenzel, K. Neuking and G. Eggeler. Vacuum induction melting of ternary NiTiX (X= Cu, Fe, Hf, Zr) shape memory alloys using graphite crucibles. Materials transactions. 2006;47(3):661-669.
  • [37] R. Kocich, I. Szurman and M. Kursa. The methods of preparation of Ti–Ni–X alloys and their forming. Shape Memory Alloys, Processing, Characterization and Applications, InTech, Rijeka. 2013:27-52.
  • [38] R. Bricknell, K. Melton and O. Mercier. The structure of NiTiCu shape memory alloys. Metallurgical Transactions A. 1979;10(6):693-697.
  • [39] R. L. Southern. Arc melting furnace. Google Patents; 1955.
  • [40] E. Weingartner and K. Samietz. Vacuum arc melting and casting furnace with a vacuum chamber and a tilting crucible. Google Patents; 1984.
  • [41] L. E. Malin. Electric arc melting furnace. Google Patents; 1975.
  • [42] C. H. Cheng. Arc melting furnace and method of melting. Google Patents; 1970.
  • [43] C. Tatar, R. Acar and I. N. Qader. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus. 2020;135(3):1-11.
  • [44] K. Tsuji and K. Nomura. Effects of Ni-Ti-Cu alloy composition and heat treatment temperature after cold working on phase transformation characteristics. Journal of materials science. 1992;27(8):2199-2204.
  • [45] Y. Chen, T. Duval, U. Hung, J. Yeh and H. Shih. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion science. 2005;47(9):2257-2279.
  • [46] M. Galati and L. Iuliano. A literature review of powder-based electron beam melting focusing on numerical simulations. Additive Manufacturing. 2018;19:1-20.
  • [47] M. Larsson, U. Lindhe and O. Harrysson, editors. Rapid Manufacturing with Electron Beam Melting (EBM)–A Manufacturing Revolution? 433. 2003 International Solid Freeform Fabrication Symposium; 2003.
  • [48] J. G. R. Sereni. Reference module in materials science and materials engineering. 2016.
  • [49] A. Mohammadhosseini, S. Masood, D. Fraser and M. Jahedi. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Advances in Manufacturing. 2015;3(3):232-243.
  • [50] C. Menna, F. Auricchio and D. Asprone. Applications of shape memory alloys in structural engineering. Shape Memory Alloy Engineering. Elsevier; 2015. p. 369-403.
  • [51] İ. N. QADER, K. Mediha, F. DAGDELEN and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri Journal of Science and Engineering. 2019;6(3):755-788.
  • [52] M. Kök, H. S. A. Zardawi, I. N. Qader and M. S. Kanca. The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus. 2019;134(5):197.
  • [53] R. Adharapurapu and K. Vecchio. Superelasticity in a new bioimplant material: Ni-rich 55NiTi alloy. Experimental mechanics. 2007;47(3):365-371.
  • [54] K. T. Oh, U. H. Joo, G. H. Park, C. J. Hwang and K. N. Kim. Effect of silver addition on the properties of nickel–titanium alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;76(2):306-314.
  • [55] N. D. Alqarni, J. Wysocka, N. El-Bagoury, J. Ryl, M. A. Amin and R. Boukherroub. Effect of cobalt addition on the corrosion behavior of near equiatomic NiTi shape memory alloy in normal saline solution: Electrochemical and XPS studies. RSC advances. 2018;8(34):19289-19300.
  • [56] H. Sehitoglu, R. Hamilton, H. Maier and Y. Chumlyakov, editors. Hysteresis in NiTi alloys. Journal de Physique IV (Proceedings); 2004: EDP sciences.
  • [57] S. Zhang. Nanostructured thin films and coatings: mechanical properties. CRC Press; 2010.
  • [58] J. Van Humbeeck and Y. Liu, editors. Shape memory alloys as damping materials. Materials science forum; 2000: Trans Tech Publ.
  • [59] Y. Fu and H. Du. RF magnetron sputtered TiNiCu shape memory alloy thin film. Materials Science and Engineering: A. 2003;339(1-2):10-16.
  • [60] K. Otsuka and X. Ren. Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science. 2005;50(5):511-678.
  • [61] T. Sakaguchi, T. Ueura, Y. Kogo, S. Takeuchi and N. Igata. Effect of hydrogen on damping capacity of Ti50Ni25Cu25 alloy. Materials transactions. 2005;46(6):1306-1310.
  • [62] I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai and H. Tsuzuki. Damping properties of Ti50Ni50− xCux alloys utilizing martensitic transformation. Journal of alloys and compounds. 2003;355(1-2):79-84.
  • [63] Y. Lo, S. Wu and H.-E. Horng. A study of B2↔ B19↔ B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta metallurgica et materialia. 1993;41(3):747-759.
  • [64] N. Igata, N. Urahashi, M. Sasaki and Y. Kogo. High damping capacity due to two-step phase transformation in Ni–Ti, Ni–Ti–Cu, and Fe–Cr–Mn alloys. Journal of alloys and compounds. 2003;355(1-2):85-89.
  • [65] Y. Elmogahzy. Engineering textiles: Integrating the design and manufacture of textile products. Woodhead Publishing; 2019.
  • [66] X. Wen, N. Zhang, X. Li and Z. Cao. Electrochemical and histomorphometric evaluation of the TiNiCu shape memory alloy. Bio-medical materials and engineering. 1997;7(1):1-11.
  • [67] C. Craciunescu and A. S. Hamdy. The effect of copper alloying element on the corrosion characteristics of Ti-Ni and ternary Ni-Ti-Cu meltspun shape memory alloy ribbons in 0.9% NaCl solution. International Journal of Electrochemical Science. 2013;8(8):10320-10334.
  • [68] M. IIJIMA, K. ENDO, H. OHNO and I. MIZOGUCHI. Effect of Cr and Cu addition on corrosion behavior of Ni-Ti alloys. Dental materials journal. 1998;17(1):31-40.
  • [69] Y. SUN, X. WAN, W. PENG, Y. WANG and M. YAN. Effects of aging time and Cu content on corrosion resistance of Ni-Ti-Cu shape memory alloy. Heat Treatment of Metals. 2012;10.
  • [70] W. Elshahawy. Biocompatibility. Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. IntechOpen; 2011.
  • [71] W. Siswomihardjo. Biocompatibility Issues of Biomaterials. Biomaterials and Medical Devices. Springer; 2016. p. 41-65.
  • [72] S. A. Shabalovskaya. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-medical materials and engineering. 1996;6(4):267-289.
  • [73] S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. Zardawi. The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417.
  • [74] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2020:1-7.
  • [75] A. Wadood. Brief overview on nitinol as biomaterial. Advances in Materials Science and Engineering. 2016;2016.
  • [76] Q. Li, Y. Zeng and X. Tang. The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery. Australasian physical & engineering sciences in medicine. 2010;33(2):129-136.
  • [77] H. Li, K. Qiu, F. Zhou, L. Li and Y. Zheng. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Scientific Reports. 2016;6:37475. doi:www.doi.org/10.1038/srep37475.
Year 2021, Volume: 4 Issue: 2, 49 - 56, 08.12.2021
https://doi.org/10.54565/jphcfum.1018817

Abstract

References

  • [1] S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems. Avrupa Bilim ve Teknoloji Dergisi. (17):1014-1030.
  • [2] I. Mihálcz. Fundamental characteristics and design method for nickel-titanium shape memory alloy. Periodica Polytechnica Mechanical Engineering. 2001;45(1):75-86.
  • [3] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72(4):1664-1672.
  • [4] J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • [5] D. Stoeckel. Shape memory actuators for automotive applications. Materials & Design. 1990;11(6):302-307.
  • [6] I. N. Qader, M. Kök, F. Dağdelen and Y. Aydogdu. A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering. 2019;6(3):755-788. doi:https://doi.org/10.31202/ecjse.562177.
  • [7] F. Dagdelen, M. A. K. Aldalawi, M. Kok and I. N. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66. doi:https://doi.org/10.1140/epjp/i2019-12479-3.
  • [8] S. Nemat-Nasser, J. Yong Choi, W.-G. Guo, J. B. Isaacs and M. Taya. High strain-rate, small strain response of a NiTi shape-memory alloy. J. Eng. Mater. Technol. 2005;127(1):83-89.
  • [9] M. Es-Souni, M. Es-Souni and H. F. Brandies. On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys:: NiTi42 and NiTi42Cu7. Biomaterials. 2001;22(15):2153-2161.
  • [10] M. Es-Souni, M. Es-Souni and H. Fischer-Brandies. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Analytical and bioanalytical chemistry. 2005;381(3):557-567.
  • [11] M. Kok, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader and E. Özen. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2020;139:3405–3413. doi:https://doi.org/10.1007/s10973-019-08788-3.
  • [12] I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen and Y. Aydogdu. The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:903–910. doi:https://doi.org/10.1007/s40995-020-00876-6.
  • [13] F. Dagdelen, M. Kok and I. Qader. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International. 2019;25(6):1420-1427.
  • [14] E. Acar, M. Kok and I. Qader. Exploring surface oxidation behavior of NiTi–V alloys. The European Physical Journal Plus. 2020;135(1):58. doi:https://doi.org/10.1140/epjp/s13360-019-00087-y.
  • [15] S. Buytoz, F. Dagdelen, I. Qader, M. Kok and B. Tanyildizi. Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International. 2019:1-12. doi:https://doi.org/10.1007/s12540-019-00444-7.
  • [16] M. Kök, I. N. Qader, S. S. Mohammed, E. ÖNER, F. Dağdelen and Y. Aydogdu. Thermal Stability and Some Thermodynamics Analysis of Heat Treated Quaternary CuAlNiTa Shape Memory Alloy. Materials Research Express. 2020;7. doi:https://doi.org/10.1088/2053-1591/ab5bef.
  • [17] I. N. Qader, B. J. Abdullah, M. A. Hassan and P. H. Mahmood. Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires. Eurasian Journal of Science and Engineering. 2019;4(3):55-65. doi: https://doi.org/10.23918/eajse.v4i3sip55.
  • [18] W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials Today. 2010;13(7-8):54-61.
  • [19] K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
  • [20] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry. 2020;139(1):29-36. doi:https://doi.org/10.1007/s10973-019-08418-y.
  • [21] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020:1-9.
  • [22] N. Pandis and C. P. Bourauel. Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Seminars in Orthodontics. 2010;16(4):249-257. doi:10.1053/j.sodo.2010.06.003.
  • [23] C. W. Ng and A. S. Mahmud, editors. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire. AIP Conference Proceedings; 2017: AIP Publishing.
  • [24] D. J. Fernandes, R. V. Peres, A. M. Mendes and C. N. Elias. Understanding the shape-memory alloys used in orthodontics. ISRN dentistry. 2011;2011.
  • [25] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dagdelen and Y. Aydogdu. Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167–1175. doi:https://doi.org/10.1007/s40995-020-00909-0.
  • [26] I. N. Qader, M. Kok and Z. D. Cirak. The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry. 2020. doi:https://doi.org/10.1007/s10973-020-09758-w.
  • [27] M. Morakabati, M. Aboutalebi, S. Kheirandish, A. K. Taheri and S. Abbasi. Hot tensile properties and microstructural evolution of as cast NiTi and NiTiCu shape memory alloys. Materials & Design. 2011;32(1):406-413.
  • [28] T. H. Nam, T. Saburi, Y. Nakata and K. i. Shimizu. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Materials Transactions, JIM. 1990;31(12):1050-1056.
  • [29] O. Mercier and K. N. Melton. The substitution of Cu for Ni in NiTi shape memory alloys. Metallurgical Transactions A. 1979;10(3):387-389.
  • [30] J. Torralba. Improvement of mechanical and physical properties in powder metallurgy. 2014.
  • [31] A. Xavior. Processing of Graphene/CNT-Metal Powder. Powder Technology. 2018:45.
  • [32] A. P. Mouritz. Introduction to aerospace materials. Elsevier; 2012.
  • [33] A. A. Atiyah, A.-R. K. A. Ali and N. M. Dawood. Characterization of NiTi and NiTiCu porous shape memory alloys prepared by powder metallurgy (Part I). Arabian Journal for Science and Engineering. 2015;40(3):901-913.
  • [34] M. Lucaci, R. L. Orban, V. Tsakiris and D. Cirstea, editors. Shape memory alloys for MEMS components made by powder metallurgy processes. 2008 2nd Electronics System-Integration Technology Conference; 2008: IEEE.
  • [35] Y. A. Alshataif, S. Sivasankaran, F. A. Al-Mufadi, A. S. Alaboodi and H. R. Ammar. Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review. Metals and Materials International. 2019:1-35.
  • [36] Z. Zhang, J. Frenzel, K. Neuking and G. Eggeler. Vacuum induction melting of ternary NiTiX (X= Cu, Fe, Hf, Zr) shape memory alloys using graphite crucibles. Materials transactions. 2006;47(3):661-669.
  • [37] R. Kocich, I. Szurman and M. Kursa. The methods of preparation of Ti–Ni–X alloys and their forming. Shape Memory Alloys, Processing, Characterization and Applications, InTech, Rijeka. 2013:27-52.
  • [38] R. Bricknell, K. Melton and O. Mercier. The structure of NiTiCu shape memory alloys. Metallurgical Transactions A. 1979;10(6):693-697.
  • [39] R. L. Southern. Arc melting furnace. Google Patents; 1955.
  • [40] E. Weingartner and K. Samietz. Vacuum arc melting and casting furnace with a vacuum chamber and a tilting crucible. Google Patents; 1984.
  • [41] L. E. Malin. Electric arc melting furnace. Google Patents; 1975.
  • [42] C. H. Cheng. Arc melting furnace and method of melting. Google Patents; 1970.
  • [43] C. Tatar, R. Acar and I. N. Qader. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus. 2020;135(3):1-11.
  • [44] K. Tsuji and K. Nomura. Effects of Ni-Ti-Cu alloy composition and heat treatment temperature after cold working on phase transformation characteristics. Journal of materials science. 1992;27(8):2199-2204.
  • [45] Y. Chen, T. Duval, U. Hung, J. Yeh and H. Shih. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion science. 2005;47(9):2257-2279.
  • [46] M. Galati and L. Iuliano. A literature review of powder-based electron beam melting focusing on numerical simulations. Additive Manufacturing. 2018;19:1-20.
  • [47] M. Larsson, U. Lindhe and O. Harrysson, editors. Rapid Manufacturing with Electron Beam Melting (EBM)–A Manufacturing Revolution? 433. 2003 International Solid Freeform Fabrication Symposium; 2003.
  • [48] J. G. R. Sereni. Reference module in materials science and materials engineering. 2016.
  • [49] A. Mohammadhosseini, S. Masood, D. Fraser and M. Jahedi. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Advances in Manufacturing. 2015;3(3):232-243.
  • [50] C. Menna, F. Auricchio and D. Asprone. Applications of shape memory alloys in structural engineering. Shape Memory Alloy Engineering. Elsevier; 2015. p. 369-403.
  • [51] İ. N. QADER, K. Mediha, F. DAGDELEN and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri Journal of Science and Engineering. 2019;6(3):755-788.
  • [52] M. Kök, H. S. A. Zardawi, I. N. Qader and M. S. Kanca. The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus. 2019;134(5):197.
  • [53] R. Adharapurapu and K. Vecchio. Superelasticity in a new bioimplant material: Ni-rich 55NiTi alloy. Experimental mechanics. 2007;47(3):365-371.
  • [54] K. T. Oh, U. H. Joo, G. H. Park, C. J. Hwang and K. N. Kim. Effect of silver addition on the properties of nickel–titanium alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;76(2):306-314.
  • [55] N. D. Alqarni, J. Wysocka, N. El-Bagoury, J. Ryl, M. A. Amin and R. Boukherroub. Effect of cobalt addition on the corrosion behavior of near equiatomic NiTi shape memory alloy in normal saline solution: Electrochemical and XPS studies. RSC advances. 2018;8(34):19289-19300.
  • [56] H. Sehitoglu, R. Hamilton, H. Maier and Y. Chumlyakov, editors. Hysteresis in NiTi alloys. Journal de Physique IV (Proceedings); 2004: EDP sciences.
  • [57] S. Zhang. Nanostructured thin films and coatings: mechanical properties. CRC Press; 2010.
  • [58] J. Van Humbeeck and Y. Liu, editors. Shape memory alloys as damping materials. Materials science forum; 2000: Trans Tech Publ.
  • [59] Y. Fu and H. Du. RF magnetron sputtered TiNiCu shape memory alloy thin film. Materials Science and Engineering: A. 2003;339(1-2):10-16.
  • [60] K. Otsuka and X. Ren. Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science. 2005;50(5):511-678.
  • [61] T. Sakaguchi, T. Ueura, Y. Kogo, S. Takeuchi and N. Igata. Effect of hydrogen on damping capacity of Ti50Ni25Cu25 alloy. Materials transactions. 2005;46(6):1306-1310.
  • [62] I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai and H. Tsuzuki. Damping properties of Ti50Ni50− xCux alloys utilizing martensitic transformation. Journal of alloys and compounds. 2003;355(1-2):79-84.
  • [63] Y. Lo, S. Wu and H.-E. Horng. A study of B2↔ B19↔ B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta metallurgica et materialia. 1993;41(3):747-759.
  • [64] N. Igata, N. Urahashi, M. Sasaki and Y. Kogo. High damping capacity due to two-step phase transformation in Ni–Ti, Ni–Ti–Cu, and Fe–Cr–Mn alloys. Journal of alloys and compounds. 2003;355(1-2):85-89.
  • [65] Y. Elmogahzy. Engineering textiles: Integrating the design and manufacture of textile products. Woodhead Publishing; 2019.
  • [66] X. Wen, N. Zhang, X. Li and Z. Cao. Electrochemical and histomorphometric evaluation of the TiNiCu shape memory alloy. Bio-medical materials and engineering. 1997;7(1):1-11.
  • [67] C. Craciunescu and A. S. Hamdy. The effect of copper alloying element on the corrosion characteristics of Ti-Ni and ternary Ni-Ti-Cu meltspun shape memory alloy ribbons in 0.9% NaCl solution. International Journal of Electrochemical Science. 2013;8(8):10320-10334.
  • [68] M. IIJIMA, K. ENDO, H. OHNO and I. MIZOGUCHI. Effect of Cr and Cu addition on corrosion behavior of Ni-Ti alloys. Dental materials journal. 1998;17(1):31-40.
  • [69] Y. SUN, X. WAN, W. PENG, Y. WANG and M. YAN. Effects of aging time and Cu content on corrosion resistance of Ni-Ti-Cu shape memory alloy. Heat Treatment of Metals. 2012;10.
  • [70] W. Elshahawy. Biocompatibility. Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. IntechOpen; 2011.
  • [71] W. Siswomihardjo. Biocompatibility Issues of Biomaterials. Biomaterials and Medical Devices. Springer; 2016. p. 41-65.
  • [72] S. A. Shabalovskaya. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-medical materials and engineering. 1996;6(4):267-289.
  • [73] S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. Zardawi. The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417.
  • [74] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2020:1-7.
  • [75] A. Wadood. Brief overview on nitinol as biomaterial. Advances in Materials Science and Engineering. 2016;2016.
  • [76] Q. Li, Y. Zeng and X. Tang. The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery. Australasian physical & engineering sciences in medicine. 2010;33(2):129-136.
  • [77] H. Li, K. Qiu, F. Zhou, L. Li and Y. Zheng. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Scientific Reports. 2016;6:37475. doi:www.doi.org/10.1038/srep37475.
There are 77 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Razaw Qadır 0000-0002-2922-3190

Safar Mohammed 0000-0002-2794-8024

Mediha Kök 0000-0001-7404-4311

Ibrahim Qader 0000-0003-1971-2254

Publication Date December 8, 2021
Submission Date November 3, 2021
Acceptance Date November 17, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Qadır, R., Mohammed, S., Kök, M., Qader, I. (2021). A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials, 4(2), 49-56. https://doi.org/10.54565/jphcfum.1018817
AMA Qadır R, Mohammed S, Kök M, Qader I. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. December 2021;4(2):49-56. doi:10.54565/jphcfum.1018817
Chicago Qadır, Razaw, Safar Mohammed, Mediha Kök, and Ibrahim Qader. “A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations”. Journal of Physical Chemistry and Functional Materials 4, no. 2 (December 2021): 49-56. https://doi.org/10.54565/jphcfum.1018817.
EndNote Qadır R, Mohammed S, Kök M, Qader I (December 1, 2021) A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials 4 2 49–56.
IEEE R. Qadır, S. Mohammed, M. Kök, and I. Qader, “A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations”, Journal of Physical Chemistry and Functional Materials, vol. 4, no. 2, pp. 49–56, 2021, doi: 10.54565/jphcfum.1018817.
ISNAD Qadır, Razaw et al. “A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations”. Journal of Physical Chemistry and Functional Materials 4/2 (December 2021), 49-56. https://doi.org/10.54565/jphcfum.1018817.
JAMA Qadır R, Mohammed S, Kök M, Qader I. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4:49–56.
MLA Qadır, Razaw et al. “A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations”. Journal of Physical Chemistry and Functional Materials, vol. 4, no. 2, 2021, pp. 49-56, doi:10.54565/jphcfum.1018817.
Vancouver Qadır R, Mohammed S, Kök M, Qader I. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.

Cited By












© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum