Araştırma Makalesi
BibTex RIS Kaynak Göster

Sinirbilimde Fitzhugh-Nagumo Modelinin Hiperbolik Tip Çözümlerinin İncelenmesi

Yıl 2023, Cilt: 1 Sayı: 1, 11 - 16, 30.06.2023
https://doi.org/10.5281/zenodo.8074822

Öz

Bu makale sinirbilimde önemli bir yere sahip olan Fitzhugh – Nagumo (FN) modelinin analitik çözümlerini elde etmeyi amaçlamaktadır. Çözümleri elde etmek için 1/G'- açılım yöntemi kullanılır. Lineer olmayan kısmi diferansiyel denklemlerin (NLPDE) çözümünde etkili ve verimli bir yöntem olan 1/G'-açılım yöntemi kullanılarak hiperbolik tip ilerleyen dalga çözümleri üretilmektetir. Daha sonra bir bilgisayar programı kullanılarak 3boyutlu, 2boyutlu ve kontur grafikleri sunulur.

Destekleyen Kurum

Yok

Kaynakça

  • A. H. Bhrawy, ‘‘A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients’’, Applied Mathematics and Computation, vol. 222, pp. 255-264, Oct. 2013, doi.org/10.1016/j.amc.2013.07.056.
  • A. Yokus, ‘‘On the exact and numerical solutions to the FitzHugh–Nagumo equation’’, International Journal of Modern Physics B, vol. 34, no 17,2050149, Jun. 2020, doi.org/10.1142/S0217979220501490.
  • H. Li and Y. Guo, ‘‘New exact solutions to the Fitzhugh–Nagumo equation’’, Applied Mathematics and Computation, vol. 180, no 2, pp. 524-528, Sep. 2006, doi.org/10.1016/j.amc.2005.12.035.
  • M. Dehghana, J. M. Heris and A. Saadatmandi, ‘‘Application of semi‐analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses’’, Mathematical Methods in the Applied Sciences, vol. 33, no 11, pp. 1384-1398, Jun. 2010, doi.org/10.1002/mma.1329.
  • S. Duran, ‘‘An investigation of the physical dynamics of a traveling wave solution called a bright soliton’’, Physica Scripta, vol. 96, no 12, 125251, Nov. 2021, doi.org/10.1088/1402-4896/ac37a1.
  • A. Yokus and M. A. Isah, ‘‘Stability analysis and solutions of (2+1)-Kadomtsev–Petviashvili equation by homoclinic technique based on Hirota bilinear form’’, Nonlinear Dynamics, vol. 109, no 4, pp. 3029-3040, Jun. 2022, doi.org/10.1007/s11071-022-07568-3.
  • A. Yokus and M. A. Isah, ‘‘Investigation of internal dynamics of soliton with the help of traveling wave soliton solution of Hamilton amplitude equation’’, Optical and Quantum Electronics, vol. 54, no 8, pp. 528, Jul. 2022, doi.org/10.1007/s11082-022-03944-w.
  • S. Duran, H. Durur and A. Yokuş, ‘‘Traveling wave and general form solutions for the coupled Higgs system’’, Mathematical Methods in the Applied Sciences, vol. 46, no 8, pp. 8915-8933, Jan. 2023, doi.org/10.1002/mma.9024.
  • S. S. Nourazar, M. Soori and A. Nazari-Golshan, ‘‘On the homotopy perturbation method for the exact solution of Fitzhugh–Nagumo equation’’, International Journal of Mathematics & Computation, vol. 27, no 1, pp. 32-43, 2016.
  • H. Li and Y. Guo, ‘‘New exact solutions to the Fitzhugh–Nagumo equation’’, Applied Mathematics and Computation, vol. 180, no 2, pp. 524-528, Sep. 2006, doi.org/10.1016/j.amc.2005.12.035.
  • H. Durur, A. Yokuş and S. Duran, ‘‘Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions’’, International Journal of Modern Physics B, 2450054, Mar. 2023, doi.org/10.1142/S0217979224500541.
  • M. Subaşı and H. Durur, ‘‘Refraction simulation of nonlinear wave for Shallow Water-Like equation’’, Celal Bayar University Journal of Science, vol. 19, no 1, pp. 47-52, Mar. 2023, doi.org/10.18466/cbayarfbe.1145651.
  • L. X. Li, E. Q. Li and M. L. Wang, ‘‘The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations’’, Applied Mathematics-A Journal of Chinese Universities, vol. 25, pp. 454-462, Dec. 2010, doi.org/10.1007/s11766-010-2128-x.
  • S. Duran, ‘‘Solitary wave solutions of the coupled konno-oono equation by using the functional variable method and the two variables (G'/G, 1/G)-expansion method’’, Adıyaman University Journal of Science, vol. 10, no 2, pp. 585-594, Dec. 2020, doi.org/10.37094/adyujsci.827964.
  • S. Duran, “Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method”, Opt. Quantum Electron., vol. 53, no. 6, 299, Jun. 2021, doi.org/10.1007/s11082-021-02940-w.
  • E. M. Zayed, S. H. Ibrahim and M. A. M. Abdelaziz, ‘‘Traveling wave solutions of the nonlinear (3+1)-dimensional Kadomtsev-Petviashvili equation using the two variables (G′/G, 1/G)-expansion method’’, Journal of Applied Mathematics, vol. 2012, pp. 1-8, Jul. 2012, doi.org/10.1155/2012/560531.
  • A. Yokus, H. Durur, H. Ahmad, P. Thounthong and Y. F. Zhang, ‘‘Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G′/G, 1/G)-expansion and (1/G′)-expansion techniques’’, Results in Physics, vol. 19, 103409, Dec.2020, doi.org/10.1016/j.rinp.2020.103409.
  • A. Yokus, ‘‘Solutions of some nonlinear partial differential equations and comparison of their solutions’’, Ph. Diss., Fırat University, Elazığ, 2011.
  • A. Yokuş, S. Duran and H. Durur, ‘‘Analysis of wave structures for the coupled Higgs equation modelling in the nuclear structure of an atom’’, The European Physical Journal Plus, vol. 137, no 9, pp. 992, Sep. 2022, doi.org/10.1140/epjp/s13360-022-03166-9.

Investigation of Hyperbolic Type Solutions of the Fitzhugh-Nagumo Model in Neuroscience

Yıl 2023, Cilt: 1 Sayı: 1, 11 - 16, 30.06.2023
https://doi.org/10.5281/zenodo.8074822

Öz

This article aims to obtain analytical solutions of the Fitzhugh – Nagumo (FN) model, which has an important place in neuroscience. The 1/G' - expansion method is used to obtain the solutions. Hyperbolic type travelling wave solutions are produced by using the 1/G'- expansion method, which is an effective and efficient method in solving nonlinear partial differential equations (NLPDEs). Then 3D, 2D and contour graphs are presented using a computer program.

Kaynakça

  • A. H. Bhrawy, ‘‘A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients’’, Applied Mathematics and Computation, vol. 222, pp. 255-264, Oct. 2013, doi.org/10.1016/j.amc.2013.07.056.
  • A. Yokus, ‘‘On the exact and numerical solutions to the FitzHugh–Nagumo equation’’, International Journal of Modern Physics B, vol. 34, no 17,2050149, Jun. 2020, doi.org/10.1142/S0217979220501490.
  • H. Li and Y. Guo, ‘‘New exact solutions to the Fitzhugh–Nagumo equation’’, Applied Mathematics and Computation, vol. 180, no 2, pp. 524-528, Sep. 2006, doi.org/10.1016/j.amc.2005.12.035.
  • M. Dehghana, J. M. Heris and A. Saadatmandi, ‘‘Application of semi‐analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses’’, Mathematical Methods in the Applied Sciences, vol. 33, no 11, pp. 1384-1398, Jun. 2010, doi.org/10.1002/mma.1329.
  • S. Duran, ‘‘An investigation of the physical dynamics of a traveling wave solution called a bright soliton’’, Physica Scripta, vol. 96, no 12, 125251, Nov. 2021, doi.org/10.1088/1402-4896/ac37a1.
  • A. Yokus and M. A. Isah, ‘‘Stability analysis and solutions of (2+1)-Kadomtsev–Petviashvili equation by homoclinic technique based on Hirota bilinear form’’, Nonlinear Dynamics, vol. 109, no 4, pp. 3029-3040, Jun. 2022, doi.org/10.1007/s11071-022-07568-3.
  • A. Yokus and M. A. Isah, ‘‘Investigation of internal dynamics of soliton with the help of traveling wave soliton solution of Hamilton amplitude equation’’, Optical and Quantum Electronics, vol. 54, no 8, pp. 528, Jul. 2022, doi.org/10.1007/s11082-022-03944-w.
  • S. Duran, H. Durur and A. Yokuş, ‘‘Traveling wave and general form solutions for the coupled Higgs system’’, Mathematical Methods in the Applied Sciences, vol. 46, no 8, pp. 8915-8933, Jan. 2023, doi.org/10.1002/mma.9024.
  • S. S. Nourazar, M. Soori and A. Nazari-Golshan, ‘‘On the homotopy perturbation method for the exact solution of Fitzhugh–Nagumo equation’’, International Journal of Mathematics & Computation, vol. 27, no 1, pp. 32-43, 2016.
  • H. Li and Y. Guo, ‘‘New exact solutions to the Fitzhugh–Nagumo equation’’, Applied Mathematics and Computation, vol. 180, no 2, pp. 524-528, Sep. 2006, doi.org/10.1016/j.amc.2005.12.035.
  • H. Durur, A. Yokuş and S. Duran, ‘‘Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions’’, International Journal of Modern Physics B, 2450054, Mar. 2023, doi.org/10.1142/S0217979224500541.
  • M. Subaşı and H. Durur, ‘‘Refraction simulation of nonlinear wave for Shallow Water-Like equation’’, Celal Bayar University Journal of Science, vol. 19, no 1, pp. 47-52, Mar. 2023, doi.org/10.18466/cbayarfbe.1145651.
  • L. X. Li, E. Q. Li and M. L. Wang, ‘‘The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations’’, Applied Mathematics-A Journal of Chinese Universities, vol. 25, pp. 454-462, Dec. 2010, doi.org/10.1007/s11766-010-2128-x.
  • S. Duran, ‘‘Solitary wave solutions of the coupled konno-oono equation by using the functional variable method and the two variables (G'/G, 1/G)-expansion method’’, Adıyaman University Journal of Science, vol. 10, no 2, pp. 585-594, Dec. 2020, doi.org/10.37094/adyujsci.827964.
  • S. Duran, “Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method”, Opt. Quantum Electron., vol. 53, no. 6, 299, Jun. 2021, doi.org/10.1007/s11082-021-02940-w.
  • E. M. Zayed, S. H. Ibrahim and M. A. M. Abdelaziz, ‘‘Traveling wave solutions of the nonlinear (3+1)-dimensional Kadomtsev-Petviashvili equation using the two variables (G′/G, 1/G)-expansion method’’, Journal of Applied Mathematics, vol. 2012, pp. 1-8, Jul. 2012, doi.org/10.1155/2012/560531.
  • A. Yokus, H. Durur, H. Ahmad, P. Thounthong and Y. F. Zhang, ‘‘Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G′/G, 1/G)-expansion and (1/G′)-expansion techniques’’, Results in Physics, vol. 19, 103409, Dec.2020, doi.org/10.1016/j.rinp.2020.103409.
  • A. Yokus, ‘‘Solutions of some nonlinear partial differential equations and comparison of their solutions’’, Ph. Diss., Fırat University, Elazığ, 2011.
  • A. Yokuş, S. Duran and H. Durur, ‘‘Analysis of wave structures for the coupled Higgs equation modelling in the nuclear structure of an atom’’, The European Physical Journal Plus, vol. 137, no 9, pp. 992, Sep. 2022, doi.org/10.1140/epjp/s13360-022-03166-9.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal ve Hesaplamalı Matematik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hülya Durur 0000-0002-9297-6873

Aleyna Aydın 0009-0004-6277-1473

Reyhan Arslantürk 0009-0004-0446-2891

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 20 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

IEEE H. Durur, A. Aydın, ve R. Arslantürk, “Investigation of Hyperbolic Type Solutions of the Fitzhugh-Nagumo Model in Neuroscience”, JSAT, c. 1, sy. 1, ss. 11–16, 2023, doi: 10.5281/zenodo.8074822.

https://jsat.ardahan.edu.tr