Araştırma Makalesi
BibTex RIS Kaynak Göster

Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network

Yıl 2020, Cilt: 1 Sayı: 2, 59 - 68, 29.12.2020

Öz

Cutting force is one of most important criteria for evaluating machinability of workpieces. For this purpose, in present study, prediction of cutting forces obtained by turning AISI 1050 steel with cryo-treated and untreated CVD-coated cutting tool inserts with artificial neural networks (ANN) was investigated. Machining parameters such as feed rate, cutting speed and conditions of cutting tool insert were selected. These parameters were used for input parameters while cutting force was used for output parameter. The employed ANN structure was chosen according to network type, training function, adaption learning function and performance function as feed-forward back propagation, TRAINLM, LEARNGD and MSE, respectively. Thus, the estimation values of cutting forces attained from ANN model during training and experimental values coincide perfectly with the regression lines, which make the R2 = 0.99874 in training. For this reason, cutting force was explained by ANN with an acceptable accuracy in this study.

Destekleyen Kurum

Batman University Scientific Research Projects Unit

Proje Numarası

BTÜBAP-2019-YL-07

Teşekkür

Many thanks to BTUBAP for financial support.

Kaynakça

  • J. Kratochvíl, J. Petrů, M. Pagáč, J. Holubják, and J. Mrazik, “Effect of Chip Breakers on The Cutting Force During The Machining of Steel C45.” Advances in Science and Technology Research Journal, vol. 11, no. 1, pp. 173-178, 2017.
  • B. Yılmaz, Ş. Karabulut, and A. Güllü, “Performance analysis of new external chip breaker for efficient machining of Inconel 718 and optimization of the cutting parameters.” Journal of Manufacturing Processes, vol. 32, pp. 553-563, 2018.
  • Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality.” Kovove Mater., vol. 54, pp. 315-320, 2016.
  • Ş. Baday, “Küreselleştirme ısıl işlemi uygulanmış AISI 1050 çeliğin tornalanmasında esas kesme kuvvetlerinin yapay sinir ağları ile modellenmesi.” Technological Applied Sciences, vol. 11, no. 1, pp. 1-9, 2016.
  • M. Hanief, , M.F. Waniand, and M.S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis.” Engineering science and technology, an international journal, vol. 20, no. 3, pp. 1220-1226, 2017.
  • H. Gürbüz, F. Sönmez, Ş. BADAY, and U. Şeker, “Farklı Talaş Kırıcı Formlarının Esas Kesme Kuvvetlerine Etkisinin Matematiksel Modellenmesi.” Batman Üniversitesi Yaşam Bilimleri Dergisi, vol. 8, no. 2/2, pp. 13-21, 2018.
  • H. Başak, ve Ş. Baday, “Küreselleştirilmiş orta karbonlu bir çeliğin işlenmesinde, kesme parametrelerinin kesme kuvvetleri ve yüzey pürüzlülüğüne etkilerinin regresyon analizi ile modellenmesi.” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no 4, pp. 253-258, 2016.
  • S. Yagmur, A. Kurt, and U. Seker, “Evaluation and mathematical modeling of delamination and cutting forces in milling of carbon fiber reinforced composite (CFRP) materials.” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 35, no. 1, pp. 457-465, 2020.
  • H.B. Ulas, and M.T. Ozkan, “Turning processes investigation of materials austenitic, martensitic and duplex stainless steels and prediction of cutting forces using artificial neural network (ANN) techniques.” Indian Journal of Engineering and Materials Sciences, vol. 26, no. 2, pp. 93-104, 2019.
  • G. Uzun, and İ. Çiftçi, “Ç 5140 çeliğinin mekanik özelliklerinin takım aşınması ve kesme kuvvetlerine etkisinin incelenmesi.” Politeknik Dergisi, vol. 15, no. 1, pp. 29-34, 2012.
  • A.İ. Özkan, İ. Sarıtaş, and S. Yaldız, “Tornalama İşleminde Kesme Kuvvetlerinin ve Takım Ucu Sıcaklığının Yapay Sinir Ağı ile Tahmin Edilmesi, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 2009, pp. 13-15.
  • A. Kurt, S. Sürücüler, ve A. Kirik, “Kesme Kuvvetlerinin Tahmini İçin Matematiksel Bir Model Geliştirme.” Politeknik Dergisi, vol. 13, no. 1, pp. 15-20, 2010.
  • S. Jeyakumar, K. Marimuthu, and T. Ramachandran, “Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM.” Journal of Mechanical Science and Technology, vol. 27, no. 9, pp. 2813-2822, 2013.
  • F. Kara, K. Aslantas, and A. Çiçek, “ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel.” Neural Computing and Applications, vol. 26, no 1, pp. 237-250, 2015.
  • I. Asilturk, H. Kahramanli, H.E. Mounayri, “Prediction of cutting forces and surface roughness using artificial neural network (ANN) and support vector regression (SVR) in turning 4140 steel.” Materials Science and Technology, vol. 28, no. 8, pp. 980-986, 2012.
  • N.A. Özbek, A. Çiçek, M. Gülesin, and O Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear.” International Journal of Machine Tools and Manufacture, vol. 86, pp. 34-43, 2014.
  • A.D. Shirbhate, N.V. Deshpande, and Y.M. Puri, “Effect of cryogenic treatment on cutting torque and surface finish in drilling operation with AISI M2 high speed steel.” Int. J. Mech. Eng. Rob. Res, vol. 1, no. 2, pp. 50-58, 2012.
  • D. Candane, N. Alagumurthi, and K. Palaniradja, “Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS.” Int J Mater Sci App, vol 2, no. 2, pp. 56–65, 2013.
  • S. Akincioğlu, H. Gökkaya, and İ. Uygur, “A review of cryogenic treatment on cutting tools.” The International Journal of Advanced Manufacturing Technology, vol. 78, no 9-12, pp. 1609-1627, 2015.
Yıl 2020, Cilt: 1 Sayı: 2, 59 - 68, 29.12.2020

Öz

Proje Numarası

BTÜBAP-2019-YL-07

Kaynakça

  • J. Kratochvíl, J. Petrů, M. Pagáč, J. Holubják, and J. Mrazik, “Effect of Chip Breakers on The Cutting Force During The Machining of Steel C45.” Advances in Science and Technology Research Journal, vol. 11, no. 1, pp. 173-178, 2017.
  • B. Yılmaz, Ş. Karabulut, and A. Güllü, “Performance analysis of new external chip breaker for efficient machining of Inconel 718 and optimization of the cutting parameters.” Journal of Manufacturing Processes, vol. 32, pp. 553-563, 2018.
  • Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality.” Kovove Mater., vol. 54, pp. 315-320, 2016.
  • Ş. Baday, “Küreselleştirme ısıl işlemi uygulanmış AISI 1050 çeliğin tornalanmasında esas kesme kuvvetlerinin yapay sinir ağları ile modellenmesi.” Technological Applied Sciences, vol. 11, no. 1, pp. 1-9, 2016.
  • M. Hanief, , M.F. Waniand, and M.S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis.” Engineering science and technology, an international journal, vol. 20, no. 3, pp. 1220-1226, 2017.
  • H. Gürbüz, F. Sönmez, Ş. BADAY, and U. Şeker, “Farklı Talaş Kırıcı Formlarının Esas Kesme Kuvvetlerine Etkisinin Matematiksel Modellenmesi.” Batman Üniversitesi Yaşam Bilimleri Dergisi, vol. 8, no. 2/2, pp. 13-21, 2018.
  • H. Başak, ve Ş. Baday, “Küreselleştirilmiş orta karbonlu bir çeliğin işlenmesinde, kesme parametrelerinin kesme kuvvetleri ve yüzey pürüzlülüğüne etkilerinin regresyon analizi ile modellenmesi.” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no 4, pp. 253-258, 2016.
  • S. Yagmur, A. Kurt, and U. Seker, “Evaluation and mathematical modeling of delamination and cutting forces in milling of carbon fiber reinforced composite (CFRP) materials.” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 35, no. 1, pp. 457-465, 2020.
  • H.B. Ulas, and M.T. Ozkan, “Turning processes investigation of materials austenitic, martensitic and duplex stainless steels and prediction of cutting forces using artificial neural network (ANN) techniques.” Indian Journal of Engineering and Materials Sciences, vol. 26, no. 2, pp. 93-104, 2019.
  • G. Uzun, and İ. Çiftçi, “Ç 5140 çeliğinin mekanik özelliklerinin takım aşınması ve kesme kuvvetlerine etkisinin incelenmesi.” Politeknik Dergisi, vol. 15, no. 1, pp. 29-34, 2012.
  • A.İ. Özkan, İ. Sarıtaş, and S. Yaldız, “Tornalama İşleminde Kesme Kuvvetlerinin ve Takım Ucu Sıcaklığının Yapay Sinir Ağı ile Tahmin Edilmesi, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 2009, pp. 13-15.
  • A. Kurt, S. Sürücüler, ve A. Kirik, “Kesme Kuvvetlerinin Tahmini İçin Matematiksel Bir Model Geliştirme.” Politeknik Dergisi, vol. 13, no. 1, pp. 15-20, 2010.
  • S. Jeyakumar, K. Marimuthu, and T. Ramachandran, “Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM.” Journal of Mechanical Science and Technology, vol. 27, no. 9, pp. 2813-2822, 2013.
  • F. Kara, K. Aslantas, and A. Çiçek, “ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel.” Neural Computing and Applications, vol. 26, no 1, pp. 237-250, 2015.
  • I. Asilturk, H. Kahramanli, H.E. Mounayri, “Prediction of cutting forces and surface roughness using artificial neural network (ANN) and support vector regression (SVR) in turning 4140 steel.” Materials Science and Technology, vol. 28, no. 8, pp. 980-986, 2012.
  • N.A. Özbek, A. Çiçek, M. Gülesin, and O Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear.” International Journal of Machine Tools and Manufacture, vol. 86, pp. 34-43, 2014.
  • A.D. Shirbhate, N.V. Deshpande, and Y.M. Puri, “Effect of cryogenic treatment on cutting torque and surface finish in drilling operation with AISI M2 high speed steel.” Int. J. Mech. Eng. Rob. Res, vol. 1, no. 2, pp. 50-58, 2012.
  • D. Candane, N. Alagumurthi, and K. Palaniradja, “Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS.” Int J Mater Sci App, vol 2, no. 2, pp. 56–65, 2013.
  • S. Akincioğlu, H. Gökkaya, and İ. Uygur, “A review of cryogenic treatment on cutting tools.” The International Journal of Advanced Manufacturing Technology, vol. 78, no 9-12, pp. 1609-1627, 2015.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Research Articles
Yazarlar

Şehmus Baday 0000-0003-4208-8779

Onur Ersöz 0000-0002-9792-2268

Proje Numarası BTÜBAP-2019-YL-07
Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 21 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 2

Kaynak Göster

APA Baday, Ş., & Ersöz, O. (2020). Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network. Journal of Soft Computing and Artificial Intelligence, 1(2), 59-68.
AMA Baday Ş, Ersöz O. Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network. JSCAI. Aralık 2020;1(2):59-68.
Chicago Baday, Şehmus, ve Onur Ersöz. “Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel With Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network”. Journal of Soft Computing and Artificial Intelligence 1, sy. 2 (Aralık 2020): 59-68.
EndNote Baday Ş, Ersöz O (01 Aralık 2020) Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network. Journal of Soft Computing and Artificial Intelligence 1 2 59–68.
IEEE Ş. Baday ve O. Ersöz, “Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network”, JSCAI, c. 1, sy. 2, ss. 59–68, 2020.
ISNAD Baday, Şehmus - Ersöz, Onur. “Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel With Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network”. Journal of Soft Computing and Artificial Intelligence 1/2 (Aralık 2020), 59-68.
JAMA Baday Ş, Ersöz O. Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network. JSCAI. 2020;1:59–68.
MLA Baday, Şehmus ve Onur Ersöz. “Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel With Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network”. Journal of Soft Computing and Artificial Intelligence, c. 1, sy. 2, 2020, ss. 59-68.
Vancouver Baday Ş, Ersöz O. Estimation of Cutting Forces Obtained by Machining AISI 1050 Steel with Cryo-Treated and Untreated Cutting Tool Insert by Using Artificial Neural Network. JSCAI. 2020;1(2):59-68.