Natural pozzolan-based green geopolymer foam for thermal insulation
Yıl 2022,
Cilt: 7 Sayı: 3, 128 - 144, 30.09.2022
Kübra Ekiz Barış
,
Leyla Tanaçan
Öz
The purpose of the current study is to investigate the possibility of volcanic Tuff of Earth of Datça (ED) in Turkey to be used as an aluminosilicate source in the production of a geopolymer foam for thermal insulation. An extensive evaluation of the effects of fine sand-to-pozzolan and Al powder-to-pozzolan ratios on the physical, mechanical, and thermal properties and morphology (porosity, average and maximum pore diameter, pore size distribution) of the pores were carried out. The sodium silicate and potassium hydroxide (12.5 M) solutions with an activator ratio of 2.5 were used as alkali activators and Al powder was used as a foaming agent. Research results reveal that Earth of Datça is a suitable precursor for the production of a geopolymer foam. Fine sand and aluminum powder contents are key factors on optimum foam structure. Addition of finely ground silica sand ensured the volumetric stability of the binder and prevented the collapse after swelling of the binder. The optimum Al powder-to-pozzolan ratio was determined as 0.5 % because it gives higher physical, mechanical and thermal properties due to the more homogenous microstructure with finer pore size, narrower pore size distribution and lower degree of interconnectivity between the pores. Research results also show that natural volcanic Tuff of Datça Peninsula as aluminosilicate source gives promising results in the field of producing highly porous geopolymers with low thermal conductivity (0.087-0.134 W/mK), high porosity (72.3-82.6 %) and an acceptable compressive strength (0.40-2.09 MPa). This study contributes to the literature that Earth of Datça-based geopolymer foam may function well as an insulation material for building enclosure.
Destekleyen Kurum
Center for Scientific Research Projects of Istanbul Technical University
Proje Numarası
MGA-2019-41837
Teşekkür
The authors express their gratitude to Prof. Dr. Emin Çiftçi, who provided the laboratory facilities of the ITU Department of Geological Engineering for optical microscope analysis.
Kaynakça
- [1] Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., & Mo, K.H. (2014). Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 72, 238–245. https://doi.org/10.1016/j.enbuild.2013.12.029
- [2] Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner Production, 109, 118–130. https://doi.org/10.1016/j.jclepro.2015.05.139
- [3] Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., & Cheng, X. (2015). Development of porous fly ash-based geopolymer with low thermal conductivity. Materials Design, 65, 529–533. https://doi.org/10.1016/j.matdes.2014.09.024
- [4] Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P (ed). Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 19-47.
- [5] Zaidi, S.F.A., Haq, E.U., Nur, K., Ejaz, N., Anis-Ur-Rehman, M., Zubair, M., & Naveed, M. (2017). Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations. Construction and Building Materials, 157, 994–1000. https://doi.org/10.1016/j.conbuildmat.2017.09.112
- [6] Papa, E., Medri, V., Kpogbemabou, D., Morinière, V., Laumonier, J., Vaccari, A., & Rossignol, S. (2016). Porosity and insulating properties of silica-fume based foams. Energy and Buildings, 131, 223–232. https://doi.org/10.1016/j.enbuild.2016.09.031
- [7] Duxson, P., Provis, J.L., Lukey, G.C., & van Deventer, J.S.J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
- [8] Bai, C., & Colombo, P. (2018). Processing, properties and applications of highly porous geopolymers: A review. Ceramics International, 44(14), 16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219
- [9] Vaou, V., & Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23(14), 1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015
- [10] Novais, R.M., Buruberri, L.H., Ascensao, G., Seabra, M.P., & Labrincha, J.A. (2016a). Porous biomass fly ash-based geopolymers with tailored thermal conductivity. Journal of Cleaner Production, 119, 99–107. https://doi.org/10.1016/j.jclepro.2016.01.083
- [11] Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., & Lin, W.T. (2021). Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams. Materials, 14, 5090. https://doi.org/10.3390/ma14175090
- [12] Phavongkham, V., Wattanasiriwech, S., Cheng, T-W., & Wattanasiriwech, D. (2020). Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Construction and Building Materials, 243, 118282, https://doi.org/10.1016/j.conbuildmat.2020.118282
- [13] Henon, J., Alzina, A., Absi, J., Smith, D.S., & Rossignol, S. (2013). Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. Journal of Porous Materials, 20, 37–46. https://doi.org/10.1007/s10934-012-9572-3
- [14] Bai, C., Ni, T., Qiaoling, W., Hongqiang, L., & Colombo, P. (2018). Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. Journal of European Ceramic Society, 38, 799–805. https://doi.org/10.1016/j.jeurceramsoc.2017.09.021
- [15] Qiao, Y., Li, X., Bai, C., Li, H., Yan, J., Wang, Y., Wang, X., Zhang, X., Zheng T., & Paolo Colombo. (2021). Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming. Journal of Asian Ceramic Societies, 9(1), 412-423. DOI: 10.1080/21870764.2021.1873482
- [16] Kamseu, E., Nait-Ali, B., Bignozzi, M.C., Leonelli, C., Rossignol, S., & Smith, D.S. (2012). Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. Journal of European Ceramic Society, 32(8), 1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030
- [17] Peng, X., Li, H., Shuai, Q., & Wang L. (2020). Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials (Basel), 13(3), 535. doi: 10.3390/ma13030535
- [18] Sornlar, W., Wannagon, A., & Supothina, S. (2021). Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers. Journal of Building Engineering, 44, 103273. https://doi.org/10.1016/j.jobe.2021.103273
- [19] Bai, C., Li, H., Bernardo, E., & Colombo, P. (2019). Waste-to-resource preparation of glass-containing foams from geopolymers. Ceramics International, 45(6), 7196–7202. https://doi.org/10.1016/j.ceramint.2018.12.227
- [20] Haq, E.U., Padmanabhan, S.K., & Licciulli, A. (2015). Microwave synthesis of thermal insulating foams from coal derived bottom ash. Fuel Processing Technology, 130, 263–267. https://doi.org/10.1016/j.fuproc.2014.10.017
- [21] Dembovska, L., Bajare, D., Ducman, V., Korat, L., & Bumanis, G. (2017). The use of different by-products in the production of lightweight alkali activated building materials. Construction and Building Materials, 135, 315–322. https://doi.org/10.1016/j.conbuildmat.2017.01.005
- [22] Akgül, E., & Tanaçan, L. (2011). Evaluation of the pozzolanic activity of the earth of Datça as a building material. International Journal of Architectural Heritage, 5, 1–26. 10.1080/15583050903171609
- [23] Ercan, T., Günay, E., Baş, H., & Can, B. (1984). Datça Yarımadasındaki kuvaterner yaşlı volkanik kayaçların petrolojisi ve kökensel yorumu [Petrology of quaternary volcanic rocks in the Datca Peninsula and comment on their origin]. Bulletin of the Mineral Research and Exploration, 97/98, 21–23
- [24] TS EN 196-6 (2010). Methods of testing cement – Part 6: Determination of fineness. Turkish Standard Institution, Ankara.
- [25] TS 25 (2008). Tras. Turkish Standard Institution, Ankara.
- [26] Barış, K.E., & Tanaçan, L. (2021). Improving the geopolymeric reactivity of Earth of Datça as a Natural Pozzolan in developing green binder. Journal of Building Engineering, 41, 102760. https:// doi.org/10.1016/j.jobe.2021.102760
- [27] Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086
- [28] Wang, Y., Wang, Y., & Zhang, M. (2021). Effect of sand content on engineering properties of fly ash-slag based strain hardening geopolymer composites. Journal of Building Engineering, 34, 101951. https://doi.org/10.1016/j.jobe.2020.101951
- [29] Jones, M.R., Ozlutas, K., & Zheng, L. (2015). Stability and instability of foamed concrete. Magazine of Concrete Research, 68(11), 1–8. 10.1680/macr.15.00097
- [30] ASTM C1437-20 (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, West Conshohocken.
- [31] TS EN 1015-10 (2001). Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar. Turkish Standard Institution, Ankara.
- [32] TS EN 13755 (2009). Natural stone test methods – Determination of water absorption at atmospheric pressure. Turkish Standard Institution, Ankara.
- [33] TS EN 14579 (2006). Natural stone test methods – Determination of sound speed propagation. Turkish Standard Institution, Ankara.
- [34] TS EN 196-1 (2009). Methods of testing cement – Part 1: Determination of strength. Turkish Standard Institution, Ankara.
- [35] ASTM C518-17 (2017). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International, West Conshohocken.
- [36] Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S., & Rui, Y. (2018). Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. Journal of Building Engineering, 20, 21–29. https://doi.org/10.1016/j.jobe.2018.06.002
- [37] Zhang, Z., Provis, J.L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081
- [38] Gualtieri, M.L., Cavallini, A., & Romagnoli, M. (2016). Interactive powder mixture concept for the preparation of geopolymers with fine porosity. Journal of European Ceramic Society, 36(10), 2641–2646. https://doi.org/10.1016/j.jeurceramsoc.2016.03.030
- [39] Kamseu, E., Ngouloure, Z.N.M., Ali, B.N., Zekeng, S., & Melo, U.C., Rossignol, S., Leonelli, C. (2015). Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 88, 45–56. https://doi.org/10.1016/j.enbuild.2014.11.066
- [40] Lim, M.K., & Cao, H. (2013). Combining multiple NDT methods to improve testing effectiveness. Construction and Building Materials, 38, 1310–1315. https://doi.org/10.1016/j.conbuildmat.2011.01.011
- [41] Hajimohammadi, A., Ngo, T., Mendis, P., Kashani, A., & van Deventer, J.S.J. (2017). Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production, 147, 330–339. https://doi.org/10.1016/j.jclepro.2017.01.134
- [42] Hamad, A.J. (2014). Materials, production, properties and application of aerated lightweight concrete: Review. International Journal of Materials Science and Engineering, 2(2), 152–157. DOI: 10.12720/ijmse.2.2.152-157
- [43] Huang, Y., Gong, L., Shi, L., Cao, W., Pan, Y., & Cheng, X. (2018). Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy and Buildings, 168, 9–18. https://doi.org/10.1016/j.enbuild.2018.02.043
- [44] Zhang, Z., Provis, J.L., Reid, A., & Wang, H. (2015). Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites, 62, 97–105. https://doi.org/10.1016/j.cemconcomp.2015.03.013
- [45] Xu, F., Gu, G., Zhang, W., Wang, H., Huang, X., & Zhu, J. (2018). Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceramics International, 44(16), 19989–19997. https://doi.org/10.1016/j.ceramint.2018.07.267
- [46] Zhang, Z., & Wang, H. (2016). The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus. Frontiers in Materials, 3(38). DOI: 10.3389/fmats.2016.00038
- [47] Prud’homme, E., Joussein, E., & Rossignol, S. (2015). Alkali-activated concrete binders as inorganic thermal insulator materials, Chapter 26, In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P (ed). Handbook of Alkali Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 687-728.
- [48] Gürdal, E. (1998). Isı iletkenlik katsayısının malzeme özellikleri ile ilişkileri. Yapı, 80, 44–46.
- [49] Schlegel, E., Häussler, K., Seifert, H., & Freiberg, K. (1999). Microporosity and its use in highly efficient thermal insulating materials. Cfi-Ceramic Forum International, 76, 7–10.
- [50] Dondi, M., Mazzanti, F., Principi, P., Raimondo, M., & Zanarini, G. (2004). Thermal conductivity of clay bricks. Journal of Materials in Civil Engineering, 16, 8–14. DOI: 10.1061/(ASCE)0899-1561(2004)16:1(8)
- [51] Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Construction and Building Materials, 171, 223–231. https://doi.org/10.1016/j.conbuildmat.2018.03.120
- [52] TS 825 (2013). Thermal insulation requirements for buildings. Turkish Standard Institution, Ankara.
- [53] Haq, E.U., Padmanabhan, S.K., Zubair, M., Ali, L., & Licciulli, A. (2016). Intumescence behaviour of bottom ash based geopolymer mortar through microwave irradiation – As affected by alkali activation. Construction and Building Materials, 126, 951–956. https://doi.org/10.1016/j.conbuildmat.2016.08.135
- [54] Novais, R.M., Ascensão, G., Buruberri, L.H., Senff, L., & Labrincha, J.A. (2016b). Influence of blowing agent on the fresh and hardened-state properties of lightweight geopolymers. Materials Design, 108, 551–559. https://doi.org/10.1016/j.matdes.2016.07.039
- [55] Palmero, P., Formia, A., Antonaci, P., Brini, S., & Tulliani, J.M. (2015). Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceramics International, 41(10), 12967–12979. https://doi.org/10.1016/j.ceramint.2015.06.140
- [56] Henon, J., Pennec, F., Alzina, A., Absi, J., Smith, D.S., & Rossignol, S. (2014). Analytical and numerical identification of the skeleton thermal conductivity of a geopolymer foam using a multi-scale analysis. Computational Materials Science, 82, 264–273. https://doi.org/10.1016/j.commatsci.2013.09.062
Yıl 2022,
Cilt: 7 Sayı: 3, 128 - 144, 30.09.2022
Kübra Ekiz Barış
,
Leyla Tanaçan
Proje Numarası
MGA-2019-41837
Kaynakça
- [1] Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., & Mo, K.H. (2014). Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 72, 238–245. https://doi.org/10.1016/j.enbuild.2013.12.029
- [2] Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner Production, 109, 118–130. https://doi.org/10.1016/j.jclepro.2015.05.139
- [3] Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., & Cheng, X. (2015). Development of porous fly ash-based geopolymer with low thermal conductivity. Materials Design, 65, 529–533. https://doi.org/10.1016/j.matdes.2014.09.024
- [4] Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P (ed). Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 19-47.
- [5] Zaidi, S.F.A., Haq, E.U., Nur, K., Ejaz, N., Anis-Ur-Rehman, M., Zubair, M., & Naveed, M. (2017). Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations. Construction and Building Materials, 157, 994–1000. https://doi.org/10.1016/j.conbuildmat.2017.09.112
- [6] Papa, E., Medri, V., Kpogbemabou, D., Morinière, V., Laumonier, J., Vaccari, A., & Rossignol, S. (2016). Porosity and insulating properties of silica-fume based foams. Energy and Buildings, 131, 223–232. https://doi.org/10.1016/j.enbuild.2016.09.031
- [7] Duxson, P., Provis, J.L., Lukey, G.C., & van Deventer, J.S.J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
- [8] Bai, C., & Colombo, P. (2018). Processing, properties and applications of highly porous geopolymers: A review. Ceramics International, 44(14), 16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219
- [9] Vaou, V., & Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23(14), 1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015
- [10] Novais, R.M., Buruberri, L.H., Ascensao, G., Seabra, M.P., & Labrincha, J.A. (2016a). Porous biomass fly ash-based geopolymers with tailored thermal conductivity. Journal of Cleaner Production, 119, 99–107. https://doi.org/10.1016/j.jclepro.2016.01.083
- [11] Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., & Lin, W.T. (2021). Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams. Materials, 14, 5090. https://doi.org/10.3390/ma14175090
- [12] Phavongkham, V., Wattanasiriwech, S., Cheng, T-W., & Wattanasiriwech, D. (2020). Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Construction and Building Materials, 243, 118282, https://doi.org/10.1016/j.conbuildmat.2020.118282
- [13] Henon, J., Alzina, A., Absi, J., Smith, D.S., & Rossignol, S. (2013). Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. Journal of Porous Materials, 20, 37–46. https://doi.org/10.1007/s10934-012-9572-3
- [14] Bai, C., Ni, T., Qiaoling, W., Hongqiang, L., & Colombo, P. (2018). Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. Journal of European Ceramic Society, 38, 799–805. https://doi.org/10.1016/j.jeurceramsoc.2017.09.021
- [15] Qiao, Y., Li, X., Bai, C., Li, H., Yan, J., Wang, Y., Wang, X., Zhang, X., Zheng T., & Paolo Colombo. (2021). Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming. Journal of Asian Ceramic Societies, 9(1), 412-423. DOI: 10.1080/21870764.2021.1873482
- [16] Kamseu, E., Nait-Ali, B., Bignozzi, M.C., Leonelli, C., Rossignol, S., & Smith, D.S. (2012). Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. Journal of European Ceramic Society, 32(8), 1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030
- [17] Peng, X., Li, H., Shuai, Q., & Wang L. (2020). Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials (Basel), 13(3), 535. doi: 10.3390/ma13030535
- [18] Sornlar, W., Wannagon, A., & Supothina, S. (2021). Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers. Journal of Building Engineering, 44, 103273. https://doi.org/10.1016/j.jobe.2021.103273
- [19] Bai, C., Li, H., Bernardo, E., & Colombo, P. (2019). Waste-to-resource preparation of glass-containing foams from geopolymers. Ceramics International, 45(6), 7196–7202. https://doi.org/10.1016/j.ceramint.2018.12.227
- [20] Haq, E.U., Padmanabhan, S.K., & Licciulli, A. (2015). Microwave synthesis of thermal insulating foams from coal derived bottom ash. Fuel Processing Technology, 130, 263–267. https://doi.org/10.1016/j.fuproc.2014.10.017
- [21] Dembovska, L., Bajare, D., Ducman, V., Korat, L., & Bumanis, G. (2017). The use of different by-products in the production of lightweight alkali activated building materials. Construction and Building Materials, 135, 315–322. https://doi.org/10.1016/j.conbuildmat.2017.01.005
- [22] Akgül, E., & Tanaçan, L. (2011). Evaluation of the pozzolanic activity of the earth of Datça as a building material. International Journal of Architectural Heritage, 5, 1–26. 10.1080/15583050903171609
- [23] Ercan, T., Günay, E., Baş, H., & Can, B. (1984). Datça Yarımadasındaki kuvaterner yaşlı volkanik kayaçların petrolojisi ve kökensel yorumu [Petrology of quaternary volcanic rocks in the Datca Peninsula and comment on their origin]. Bulletin of the Mineral Research and Exploration, 97/98, 21–23
- [24] TS EN 196-6 (2010). Methods of testing cement – Part 6: Determination of fineness. Turkish Standard Institution, Ankara.
- [25] TS 25 (2008). Tras. Turkish Standard Institution, Ankara.
- [26] Barış, K.E., & Tanaçan, L. (2021). Improving the geopolymeric reactivity of Earth of Datça as a Natural Pozzolan in developing green binder. Journal of Building Engineering, 41, 102760. https:// doi.org/10.1016/j.jobe.2021.102760
- [27] Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086
- [28] Wang, Y., Wang, Y., & Zhang, M. (2021). Effect of sand content on engineering properties of fly ash-slag based strain hardening geopolymer composites. Journal of Building Engineering, 34, 101951. https://doi.org/10.1016/j.jobe.2020.101951
- [29] Jones, M.R., Ozlutas, K., & Zheng, L. (2015). Stability and instability of foamed concrete. Magazine of Concrete Research, 68(11), 1–8. 10.1680/macr.15.00097
- [30] ASTM C1437-20 (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, West Conshohocken.
- [31] TS EN 1015-10 (2001). Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar. Turkish Standard Institution, Ankara.
- [32] TS EN 13755 (2009). Natural stone test methods – Determination of water absorption at atmospheric pressure. Turkish Standard Institution, Ankara.
- [33] TS EN 14579 (2006). Natural stone test methods – Determination of sound speed propagation. Turkish Standard Institution, Ankara.
- [34] TS EN 196-1 (2009). Methods of testing cement – Part 1: Determination of strength. Turkish Standard Institution, Ankara.
- [35] ASTM C518-17 (2017). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International, West Conshohocken.
- [36] Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S., & Rui, Y. (2018). Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. Journal of Building Engineering, 20, 21–29. https://doi.org/10.1016/j.jobe.2018.06.002
- [37] Zhang, Z., Provis, J.L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081
- [38] Gualtieri, M.L., Cavallini, A., & Romagnoli, M. (2016). Interactive powder mixture concept for the preparation of geopolymers with fine porosity. Journal of European Ceramic Society, 36(10), 2641–2646. https://doi.org/10.1016/j.jeurceramsoc.2016.03.030
- [39] Kamseu, E., Ngouloure, Z.N.M., Ali, B.N., Zekeng, S., & Melo, U.C., Rossignol, S., Leonelli, C. (2015). Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 88, 45–56. https://doi.org/10.1016/j.enbuild.2014.11.066
- [40] Lim, M.K., & Cao, H. (2013). Combining multiple NDT methods to improve testing effectiveness. Construction and Building Materials, 38, 1310–1315. https://doi.org/10.1016/j.conbuildmat.2011.01.011
- [41] Hajimohammadi, A., Ngo, T., Mendis, P., Kashani, A., & van Deventer, J.S.J. (2017). Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production, 147, 330–339. https://doi.org/10.1016/j.jclepro.2017.01.134
- [42] Hamad, A.J. (2014). Materials, production, properties and application of aerated lightweight concrete: Review. International Journal of Materials Science and Engineering, 2(2), 152–157. DOI: 10.12720/ijmse.2.2.152-157
- [43] Huang, Y., Gong, L., Shi, L., Cao, W., Pan, Y., & Cheng, X. (2018). Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy and Buildings, 168, 9–18. https://doi.org/10.1016/j.enbuild.2018.02.043
- [44] Zhang, Z., Provis, J.L., Reid, A., & Wang, H. (2015). Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites, 62, 97–105. https://doi.org/10.1016/j.cemconcomp.2015.03.013
- [45] Xu, F., Gu, G., Zhang, W., Wang, H., Huang, X., & Zhu, J. (2018). Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceramics International, 44(16), 19989–19997. https://doi.org/10.1016/j.ceramint.2018.07.267
- [46] Zhang, Z., & Wang, H. (2016). The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus. Frontiers in Materials, 3(38). DOI: 10.3389/fmats.2016.00038
- [47] Prud’homme, E., Joussein, E., & Rossignol, S. (2015). Alkali-activated concrete binders as inorganic thermal insulator materials, Chapter 26, In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P (ed). Handbook of Alkali Activated Cements, Mortars and Concretes, Woodhead Publishing, UK, 687-728.
- [48] Gürdal, E. (1998). Isı iletkenlik katsayısının malzeme özellikleri ile ilişkileri. Yapı, 80, 44–46.
- [49] Schlegel, E., Häussler, K., Seifert, H., & Freiberg, K. (1999). Microporosity and its use in highly efficient thermal insulating materials. Cfi-Ceramic Forum International, 76, 7–10.
- [50] Dondi, M., Mazzanti, F., Principi, P., Raimondo, M., & Zanarini, G. (2004). Thermal conductivity of clay bricks. Journal of Materials in Civil Engineering, 16, 8–14. DOI: 10.1061/(ASCE)0899-1561(2004)16:1(8)
- [51] Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Construction and Building Materials, 171, 223–231. https://doi.org/10.1016/j.conbuildmat.2018.03.120
- [52] TS 825 (2013). Thermal insulation requirements for buildings. Turkish Standard Institution, Ankara.
- [53] Haq, E.U., Padmanabhan, S.K., Zubair, M., Ali, L., & Licciulli, A. (2016). Intumescence behaviour of bottom ash based geopolymer mortar through microwave irradiation – As affected by alkali activation. Construction and Building Materials, 126, 951–956. https://doi.org/10.1016/j.conbuildmat.2016.08.135
- [54] Novais, R.M., Ascensão, G., Buruberri, L.H., Senff, L., & Labrincha, J.A. (2016b). Influence of blowing agent on the fresh and hardened-state properties of lightweight geopolymers. Materials Design, 108, 551–559. https://doi.org/10.1016/j.matdes.2016.07.039
- [55] Palmero, P., Formia, A., Antonaci, P., Brini, S., & Tulliani, J.M. (2015). Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceramics International, 41(10), 12967–12979. https://doi.org/10.1016/j.ceramint.2015.06.140
- [56] Henon, J., Pennec, F., Alzina, A., Absi, J., Smith, D.S., & Rossignol, S. (2014). Analytical and numerical identification of the skeleton thermal conductivity of a geopolymer foam using a multi-scale analysis. Computational Materials Science, 82, 264–273. https://doi.org/10.1016/j.commatsci.2013.09.062