Araştırma Makalesi
BibTex RIS Kaynak Göster

Dewatering Process for Reuse of Seabed Dredging Material and Time and Cost Optimization of the Process by Value Engineering Method

Yıl 2024, Cilt: 9 Sayı: 1, 72 - 83, 26.03.2024
https://doi.org/10.47481/jscmt.1384935

Öz

The decrease in resources in the world has led people to produce new solutions for the more efficient use of resources and to use various management techniques. One of the techniques used is Value Engineering. Value Engineering strives to increase the value of structures by optimally organizing each component that makes up the structure. Increasing the value of a structure is possible by eliminating all the unnecessary costs in line with specific criteria and by providing the optimal solution between the owner, the user, and the contractor's objectives, that is, the duration, cost, and quality. This study includes the changes the Value Engineering team made to increase the value of the materials extracted from the submarine in a Container Port Terminal project without harming the environment and making them reusable. While expanding the project value, it also aimed to reduce the project duration and cost by considering the sustainability criteria. The original project was to create a clay pool while dewatering, separating the material, filling the loose sand into the reclamation area, and removing the sludge material by sea. With the recommendation of the value engineering team, the dewatering process was transformed into a method of directly pressing the dredged loose sand into the breeding area, filtering the material with geotextile tubes, and removing the material by loading it on the pontoons. With this change in the project, 42% savings were obtained from the cost and 21% from the project duration.

Kaynakça

  • Atabay, Ş. (2023). Value Engineering in construction projects. In Cengiz, M. S., & Ozkaya, U. (Eds.), Küreselleşen Dünyada Mühendislik ve Mimarlık (pp. 107–139). Duvar Yayınları.
  • SAVE International. (2023). About the value methodology. https://www.value-eng.org/page/AboutVM
  • European Environment Agency. (2023). News: EU maritime transport. https://www.eea.europa.eu/highlights/eu-maritime-transport-first-environmental
  • International Association of Dredging Companies (IADC). (2023). The importance of dredging. https://www.iadc-dredging.com/subject/what-is-dredging/the-importance-of-dredging/
  • Demirbaş, N. (2016). Assessment and beneficial use of the material from seabed dredging operations [Master’s thesis, Istanbul Technical University].
  • Karadoğan, Ü., Çevikbilen, G., & Teymür, B. (2020). Use of dredge materials as road embankment. Uludağ Univ J Fac Eng, 25(2), 1059–1070. [CrossRef]
  • Özer Erdoğan, P. & Başar, H. M. (2019). Recycling of marine dredged materials, coal fly ash and waste foundry sand as lightweight aggregates. J Fac Eng Archit Gazi Univ, 34(3), 1377–1394.
  • Karadoğan Ü., Korkut, S., Çevikbilen, G., Teymur, B., & Koyuncu, İ. (2021). Evaluation of beneficial of polyacrylamide use dewatering of dredged sludge obtained from Golden Horn. Mar Georesour Geotechnol, 39(8), 919–928. [CrossRef]
  • Cao, B., Zhang, T., Zhang, W., & Wang, D. (2021). Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res, 189, 1–19. [CrossRef]
  • Karadoğan, Ü., Çevikbilen, G., Korkut, S., Pasaoglu, M. E., & Teymur, B. (2022). Dewatering of Golden Horn sludge with geotextile tube and determination of optimum operating conditions: A novel approach. Mar Georesour Geotechnol, 40(7), 782–794. [CrossRef]
  • Zhang, H., Sun, H. L., Liu, S. J., Chu, J., Shi, L., Geng, X. Y., Deng, Y., & Cai, Y. Q. (2023). Large-strain consolidation of sludge in multiple-drainage geotextile tubes. J Geotech Geoenviron Eng, 149(6), 04023037. [CrossRef]
  • Li, C., Song, Z., Zhang, W., Li, L., Liao, G., & Wang, D. (2022). Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. J Water Process Eng, 49, 103051. [CrossRef]
  • McCafferty, C. M. (2021). A cost-benefit analysis for geotextile tube dewatering with and without a spacer product [Doctoral Thesis, Drexel University].
  • Pu, H., Mastoi, A. K., Chen, X., Song, D., Qiu, J., & Yang, P. (2021). An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content. Front Environ Sci Eng, 15, 1–12. [CrossRef]
  • Noe, K. M., & Kim, K. (2020). Preliminary framework for sustainable beneficial use of dredged materials in Yangon River, Myanmar. J Water Chem Technol, 42, 514–521. [CrossRef]
  • Karadoğan, Ü., Çevikbilen, G., Korkut, S., & Teymur, B. (2022). Dewatering of mine waste using geotextile tubes. Min Metall Explor, 39(6), 2477–2490. [CrossRef]
  • Atabay, Ş. (2021). Value engineering for the selection of the filler material between shoring wall and the structure. Tehnički vjesnik, 28(6), 2164–2172. [CrossRef]
  • Albarbary, M. M., Tahwia, A. M., & Elmasoudi, I. (2023). Integration between sustainability and value engineering in the production of eco-friendly concrete. Sustainability, 15(4), 3565. [CrossRef]
  • Taher, A. H., & Elbeltagi, E. E. (2023). Integrating building information modeling with value engineering to facilitate the selection of building design alternatives considering sustainability. Int J Constr Manag, 23(11), 1886–1901. [CrossRef]
  • Gunarathne, A. S., Zainudeen, N., Perera, C. S. R., & Perera, B. A. K. S. (2022). A framework of an integrated sustainability and value engineering concepts for construction projects. Int J Constr Manag, 22(11), 2178–2190. [CrossRef]
  • Alsanabani, N. M., Al-Gahtani, K. S., Bin Mahmoud, A. A., & Aljadhai, S. I. (2023). Integrated methods for selecting construction foundation type based on using a value engineering principle. Sustainability, 15(11), 8547. [CrossRef]
  • Atabay, Ş. (2023). Determination of exterior material in sustainable buildings by value engineering method according to LEED criteria. J Sustain Constr Mater Technol, 8(1), 1–11. [CrossRef]
  • Karkee, M. B., Horvitz, G. E., Chamberlain, M. B., Gastineau, A. J., Bennett, A. K., & Mooney, T. (2022). Geotechnical and structural adaptations for the seismic design of a new ferry terminal in Washington. Ports, 2022, 848–858. [CrossRef]
  • Caspe, H. P., Kim, A. Y., Bergen, L. J., & Araujo, J. R. (1994). Environmental planning for the Massachusetts Water Resources Authority’s MetroWest water supply tunnel. In Tunnelling ’94. Springer, Boston, MA. [CrossRef]
  • Gupta, V. K. (2009). Flexible strategic framework for managing forces of continuity and change in value engineering processes: Study in Indian context. Glob J Flex Syst Manag, 10(4), 55–65. [CrossRef]
  • U.S. Department of Transportation Federal Highway Administration. (2017, June 27). The value engineering (VE) process and job plan. https://www.fhwa.dot.gov/ve/veproc.cfm
  • Kazanç, D. (2000). Value engineering in construction [Master’s thesis, Istanbul Technical University].
  • Fowler, T. C. (1990). Value analysis design (Competitive manufacturing series). John Wiley & Sons, USA.
  • Deniz, T. (2016). Türkiye’de ulaşım sektöründe yaşanan değişimler ve mevcut durum. Doğu Coğrafya Derg, 21(36), 135–156. [CrossRef]
  • Sheehan, C., & Harrington, J. J. W. M. (2012). Management of dredge material in the Republic of Ireland - a review. Waste Manag, 32(5), 1031–1044. [CrossRef]
  • Çevikbilen, G., Başar, H. M., Karadoğan, Ü., Teymur, B., Dağlı, S., & Tolun, L. (2020). Assessment of the use of dredged marine materials in sanitary landfills: A case study from the Marmara sea. Waste Manag, 113, 70–79. [CrossRef]
  • Moo-Young, H. K., Gaffney, D. A., & Mo, X. (2002). Testing procedures to assess the viability of dewatering with geotextile tubes. Geotext Geomembr, 20(5), 289–303. [CrossRef]
  • Liao, K., & Bhatia, S. K. (2005). Geotextile tube: Filtration performance of woven geotextiles under pressure. Proceedings of NAGS 2005/GRI – 19 Cooperative Conference, Las Vegas, NV, USA.
  • Lawson, C. R. (2008). Geotextile containment for hydraulic and environmental engineering. Geosynth Int, 15(6), 384–427. [CrossRef]
  • Ratnayesuraj, C. R., & Bhatia, S. K. (2018). Testing and analytical modeling of two-dimensional geotextile tube dewatering process. Geosynth Int, 25(2), 132–149. [CrossRef]
  • Müller, M., & Vidal, D. (2019). Comparison between open and closed system for dewatering with geotextile: Field and comparative study. Int J Civ Environ Eng, 13, 634–639.
  • Aparicio Ardila, M. A., Souza, S. T. D., Silva, J. L. D., Valentin, C. A., & Dantas, A. D. B. (2020). Geotextile tube dewatering performance assessment: An experimental study of sludge dewatering generated at a water treatment plant. Sustainability, 12(19), 8129. [CrossRef]
  • E Silva, R. A., Negri, R. G., & de Mattos Vidal, D. (2019). A new image-based technique for measuring pore size distribution of nonwoven geotextiles. Geosynth Int, 26(3), 261–272. [CrossRef]
  • Kayabaşı Aksu C. (2019). Research on value engineering with applications in marineconstruction [Master’s thesis, Yildiz Technical University].
Yıl 2024, Cilt: 9 Sayı: 1, 72 - 83, 26.03.2024
https://doi.org/10.47481/jscmt.1384935

Öz

Kaynakça

  • Atabay, Ş. (2023). Value Engineering in construction projects. In Cengiz, M. S., & Ozkaya, U. (Eds.), Küreselleşen Dünyada Mühendislik ve Mimarlık (pp. 107–139). Duvar Yayınları.
  • SAVE International. (2023). About the value methodology. https://www.value-eng.org/page/AboutVM
  • European Environment Agency. (2023). News: EU maritime transport. https://www.eea.europa.eu/highlights/eu-maritime-transport-first-environmental
  • International Association of Dredging Companies (IADC). (2023). The importance of dredging. https://www.iadc-dredging.com/subject/what-is-dredging/the-importance-of-dredging/
  • Demirbaş, N. (2016). Assessment and beneficial use of the material from seabed dredging operations [Master’s thesis, Istanbul Technical University].
  • Karadoğan, Ü., Çevikbilen, G., & Teymür, B. (2020). Use of dredge materials as road embankment. Uludağ Univ J Fac Eng, 25(2), 1059–1070. [CrossRef]
  • Özer Erdoğan, P. & Başar, H. M. (2019). Recycling of marine dredged materials, coal fly ash and waste foundry sand as lightweight aggregates. J Fac Eng Archit Gazi Univ, 34(3), 1377–1394.
  • Karadoğan Ü., Korkut, S., Çevikbilen, G., Teymur, B., & Koyuncu, İ. (2021). Evaluation of beneficial of polyacrylamide use dewatering of dredged sludge obtained from Golden Horn. Mar Georesour Geotechnol, 39(8), 919–928. [CrossRef]
  • Cao, B., Zhang, T., Zhang, W., & Wang, D. (2021). Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res, 189, 1–19. [CrossRef]
  • Karadoğan, Ü., Çevikbilen, G., Korkut, S., Pasaoglu, M. E., & Teymur, B. (2022). Dewatering of Golden Horn sludge with geotextile tube and determination of optimum operating conditions: A novel approach. Mar Georesour Geotechnol, 40(7), 782–794. [CrossRef]
  • Zhang, H., Sun, H. L., Liu, S. J., Chu, J., Shi, L., Geng, X. Y., Deng, Y., & Cai, Y. Q. (2023). Large-strain consolidation of sludge in multiple-drainage geotextile tubes. J Geotech Geoenviron Eng, 149(6), 04023037. [CrossRef]
  • Li, C., Song, Z., Zhang, W., Li, L., Liao, G., & Wang, D. (2022). Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride. J Water Process Eng, 49, 103051. [CrossRef]
  • McCafferty, C. M. (2021). A cost-benefit analysis for geotextile tube dewatering with and without a spacer product [Doctoral Thesis, Drexel University].
  • Pu, H., Mastoi, A. K., Chen, X., Song, D., Qiu, J., & Yang, P. (2021). An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content. Front Environ Sci Eng, 15, 1–12. [CrossRef]
  • Noe, K. M., & Kim, K. (2020). Preliminary framework for sustainable beneficial use of dredged materials in Yangon River, Myanmar. J Water Chem Technol, 42, 514–521. [CrossRef]
  • Karadoğan, Ü., Çevikbilen, G., Korkut, S., & Teymur, B. (2022). Dewatering of mine waste using geotextile tubes. Min Metall Explor, 39(6), 2477–2490. [CrossRef]
  • Atabay, Ş. (2021). Value engineering for the selection of the filler material between shoring wall and the structure. Tehnički vjesnik, 28(6), 2164–2172. [CrossRef]
  • Albarbary, M. M., Tahwia, A. M., & Elmasoudi, I. (2023). Integration between sustainability and value engineering in the production of eco-friendly concrete. Sustainability, 15(4), 3565. [CrossRef]
  • Taher, A. H., & Elbeltagi, E. E. (2023). Integrating building information modeling with value engineering to facilitate the selection of building design alternatives considering sustainability. Int J Constr Manag, 23(11), 1886–1901. [CrossRef]
  • Gunarathne, A. S., Zainudeen, N., Perera, C. S. R., & Perera, B. A. K. S. (2022). A framework of an integrated sustainability and value engineering concepts for construction projects. Int J Constr Manag, 22(11), 2178–2190. [CrossRef]
  • Alsanabani, N. M., Al-Gahtani, K. S., Bin Mahmoud, A. A., & Aljadhai, S. I. (2023). Integrated methods for selecting construction foundation type based on using a value engineering principle. Sustainability, 15(11), 8547. [CrossRef]
  • Atabay, Ş. (2023). Determination of exterior material in sustainable buildings by value engineering method according to LEED criteria. J Sustain Constr Mater Technol, 8(1), 1–11. [CrossRef]
  • Karkee, M. B., Horvitz, G. E., Chamberlain, M. B., Gastineau, A. J., Bennett, A. K., & Mooney, T. (2022). Geotechnical and structural adaptations for the seismic design of a new ferry terminal in Washington. Ports, 2022, 848–858. [CrossRef]
  • Caspe, H. P., Kim, A. Y., Bergen, L. J., & Araujo, J. R. (1994). Environmental planning for the Massachusetts Water Resources Authority’s MetroWest water supply tunnel. In Tunnelling ’94. Springer, Boston, MA. [CrossRef]
  • Gupta, V. K. (2009). Flexible strategic framework for managing forces of continuity and change in value engineering processes: Study in Indian context. Glob J Flex Syst Manag, 10(4), 55–65. [CrossRef]
  • U.S. Department of Transportation Federal Highway Administration. (2017, June 27). The value engineering (VE) process and job plan. https://www.fhwa.dot.gov/ve/veproc.cfm
  • Kazanç, D. (2000). Value engineering in construction [Master’s thesis, Istanbul Technical University].
  • Fowler, T. C. (1990). Value analysis design (Competitive manufacturing series). John Wiley & Sons, USA.
  • Deniz, T. (2016). Türkiye’de ulaşım sektöründe yaşanan değişimler ve mevcut durum. Doğu Coğrafya Derg, 21(36), 135–156. [CrossRef]
  • Sheehan, C., & Harrington, J. J. W. M. (2012). Management of dredge material in the Republic of Ireland - a review. Waste Manag, 32(5), 1031–1044. [CrossRef]
  • Çevikbilen, G., Başar, H. M., Karadoğan, Ü., Teymur, B., Dağlı, S., & Tolun, L. (2020). Assessment of the use of dredged marine materials in sanitary landfills: A case study from the Marmara sea. Waste Manag, 113, 70–79. [CrossRef]
  • Moo-Young, H. K., Gaffney, D. A., & Mo, X. (2002). Testing procedures to assess the viability of dewatering with geotextile tubes. Geotext Geomembr, 20(5), 289–303. [CrossRef]
  • Liao, K., & Bhatia, S. K. (2005). Geotextile tube: Filtration performance of woven geotextiles under pressure. Proceedings of NAGS 2005/GRI – 19 Cooperative Conference, Las Vegas, NV, USA.
  • Lawson, C. R. (2008). Geotextile containment for hydraulic and environmental engineering. Geosynth Int, 15(6), 384–427. [CrossRef]
  • Ratnayesuraj, C. R., & Bhatia, S. K. (2018). Testing and analytical modeling of two-dimensional geotextile tube dewatering process. Geosynth Int, 25(2), 132–149. [CrossRef]
  • Müller, M., & Vidal, D. (2019). Comparison between open and closed system for dewatering with geotextile: Field and comparative study. Int J Civ Environ Eng, 13, 634–639.
  • Aparicio Ardila, M. A., Souza, S. T. D., Silva, J. L. D., Valentin, C. A., & Dantas, A. D. B. (2020). Geotextile tube dewatering performance assessment: An experimental study of sludge dewatering generated at a water treatment plant. Sustainability, 12(19), 8129. [CrossRef]
  • E Silva, R. A., Negri, R. G., & de Mattos Vidal, D. (2019). A new image-based technique for measuring pore size distribution of nonwoven geotextiles. Geosynth Int, 26(3), 261–272. [CrossRef]
  • Kayabaşı Aksu C. (2019). Research on value engineering with applications in marineconstruction [Master’s thesis, Yildiz Technical University].
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı İşletmesi
Bölüm Makaleler
Yazarlar

Cansu Kayabaşı Aksu Bu kişi benim 0009-0003-9653-6204

Şenay Atabay 0000-0003-0151-5498

Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 2 Kasım 2023
Kabul Tarihi 3 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Kayabaşı Aksu, C., & Atabay, Ş. (2024). Dewatering Process for Reuse of Seabed Dredging Material and Time and Cost Optimization of the Process by Value Engineering Method. Journal of Sustainable Construction Materials and Technologies, 9(1), 72-83. https://doi.org/10.47481/jscmt.1384935

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr