Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 9 Sayı: 2, 114 - 127, 24.06.2024
https://doi.org/10.47481/jscmt.1499749

Öz

Proje Numarası

BAP-FKB-2020-1013

Kaynakça

  • 1. Visintin, P., Mohamed Ali, M. S., Albitar, M., & Lu- cas, W. (2017). Shear behavior of geopolymer con- crete beams without stirrups. Constr Build Mater, 148, 10–21. [CrossRef]
  • 2. Lloyd, N., & Rangan, B. (2010). Geopolymer con- crete: A review of development and opportunities. In 35th Conference on Our World in Concrete and Structures, pp. 25–27.
  • 3. Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and early age physical properties of ambient cured geopolymer mortar based on Class C fly ash. Int J Concr Struct Mater, 9(1), 35–43. [CrossRef]
  • 4. Luhar, S., Chaudhary, S., & Luhar, I. (2019). De- velopment of rubberized geopolymer concrete: Strength and durability studies. Constr Build Mater, 204, 740–753. [CrossRef]
  • 5. Madheswaran, C. K., Ambily, P. S., Dattatreya, J. K., & Ramesh, G. (2015). Experimental studies on be- haviour of reinforced geopolymer concrete beams subjected to monotonic static loading. J Inst Eng In- dia Ser A, 96(2), 139–149. [CrossRef]
  • 6. Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. J Mater Sci, 42(9), 2917–2933. [CrossRef ]
  • 7. Pham, D. Q., Nguyen, T. N., Le, S. T., Pham, T. T., & Ngo, T. D. (2021). The structural behaviours of steel reinforced geopolymer concrete beams: An experi- mental and numerical investigation. Structures, 33, 567–580. [CrossRef ]
  • 8. Tyson, S., & Tayabji, S. (2010). Geopolymer Con- [22] crete (No. FHWA-HIF-10-014). United States. Federal Highway Administration.
  • 9. Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R., & Zarina, Y. (2012). The [23] processing, characterization, and properties of fly ash based geopolymer concrete. Rev Adv Mater Sci, 30(1), 90–97. [24]
  • 10. Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater, 47, 409–418. [CrossRef] [25]
  • 11. Fernandez-Jimenez, A., Palomo, A., & Lopez-Hom- brados, C. (2006). Engineering properties of alka- li-activated fly ash concrete. ACI Mater J, 103(2), 106. [CrossRef] [26]
  • 12. Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B. (2004). On the development of fly ash-based geopolymer concrete. Mater J, 101(6), 467–472. [CrossRef ] [27]
  • 13. Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B. (2004). Properties of geopolymer concrete with fly ash as source material: Effect of mixture composition. Spec Publ, 222, 109–118. [28]
  • 14. Delair, S., Prud’homme, É., Peyratout, C., Smith, A., Michaud, P., Eloy, L., Joussein, E., & Rossignol, S. (2012). Durability of inorganic foam in solution: The role of alkali elements in the geopolymer net- [29] work. Corros Sci, 59, 213–221. [CrossRef]
  • 15. Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geo- polymer produced by granulated blast furnace slag. Miner Eng, 16(3), 205–210. [CrossRef] [30]
  • 16. Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structur- al and material performance of geopolymer concrete: A review. Constr Build Mater, 186, 90–102. [CrossRef]
  • 17. Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2005). Behaviour and strength of reinforced [31] fly ash-based geopolymer concrete beams. Australian Structural Engineering Conference 2005, pp. 453.
  • 18. Sumajouw, M. D. J., & Rangan, B. V. R. (2006). Low-calcium fly ash-based geopolymer concrete: [32] Reinforced beams and columns. Curtin Univ Technol. https://espace.curtin.edu.au/bitstream/ handle/20.500.11937/23928/19466_downloaded_ [33] stream_558.pdf
  • 19. Dattatreya, J., Rajamane, N., Sabitha, D., Ambily, P., & Nataraja, M. (2011). Flexural behaviour of rein- forced geopolymer concrete beams. Int J Civ Struct [34] Eng, 2(1), 138–159.
  • 20. Yost, J. R., Radlińska, A., Ernst, S., Salera, M., & Martignetti, N. J. (2013). Structural behavior of al- [35] kali activated fly ash concrete. Part. Structural testing and experimental findings. Mater Struct, 46(3), 449–462. [CrossRef ] [36]
  • 21. Kumaravel, S., & Thirugnanasambandam, S. (2013). Flexural behaviour of reinforced low calcium fly ash based geopolymer concrete beam. Glob J Res Eng, 13(8), 8–14.
  • 22. Kumaravel, S., Thirugnanasambandam, S., & Jeyase- har, A. (2014). Flexural behavior of geopolymer concrete beams with GGBS. IUP J Struct Eng, 7(1), 45–54.
  • 23. Yodsudjai, W. (2014). Application of fly ash-based geopolymer for structural member and repair materi- als. 13th Int Ceram Congr - Part F, 92, 74–83. [CrossRef]
  • 24. Madheswaran, C., Ambily, P., Rajamane, N., & Arun, G. (2014). Studies on flexural behaviour of reinforced geopolymer concrete beams with lightweight aggre- gates. Int J Civ Struct Eng, 4(3), 295–305.
  • 25. [CrossRef] Hutagi, A., & Khadiranaikar, R. B. (2016). Flexural behavior of reinforced geopolymer concrete beams. Int Conf Electr Electron Optim Tech, ICEEOT 2016, 3463–3467. [CrossRef ]
  • 26. Kumar, P. U., & Kumar, B. S. (2016). Flexural be- haviour of reinforced geopolymer concrete beams with GGBS and metakaoline. Int J Civ Eng Technol, 7(6), 260–277.
  • 27. Zhang, H., Wan, K., Wu, B., & Hu, Z. (2021). Flex- ural behavior of reinforced geopolymer concrete beams with recycled coarse aggregates. Adv Struct Eng, 24(14), 3281–3298. [CrossRef]
  • 28. Alex, A. G., Gebrehiwet, T., Kemal, Z., & Subramani- an, R. B. (2022). Structural performance of low-cal- cium fly ash geopolymer reinforced concrete beam. Iran J Sci Technol Trans Civ Eng, 46(1) 1–12. [CrossRef]
  • 29. Jeyasehar, C., Saravanan, G., & Salahuddin, M. (2013). Development of fly ash based geopolymer precast concrete elements. Asian J Civ Eng (BHRC), 14(4), 605–616
  • 30. Zinkaah, O. H., Araba, A., & Alhawat, M. (2021). Performance of ACI code for predicting the flex- ural capacity and deflection of reinforced geopoly- mer concrete beams. IOP Conf Ser Mater Sci Eng, 1090(1), 012067. [CrossRef]
  • 31. Srinivasan, S., Karthik, A., & Nagan, D. S. (2014). An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams. Int J Eng Sci Res Technol, 3(4), 1963–1968.
  • 32. Devika, C. P., Deepthi, R. (2015). Study of flexural behavior of hybrid fiber reinforced geopolymer con- crete beam. Int J Sci Res (IJSR), 4(7), 130–135.
  • 33. Kumar, V. S., Ganesan, N., & Indira, P. V. (2021). Shear strength of hybrid fibre-reinforced ternary blend geopolymer concrete beams under flexure. Materials, 14(21), 6634. [CrossRef]
  • 34. Abraham, R., Raj, S., & Abraham, V. (2013). Strength and behaviour of geopolymer concrete beams. Int J Innov Res Sci Eng Technol, 2(1), 159–166.
  • 35. Mourougane, R., Puttappa, C., Sashidhar, C., & Muthu, K. (2012). Shear behaviour of high strength GPC/TVC beams. Proc Int Conf Adv Arch Civ Eng, 21, 142.
  • 36. Chang, E. H., Sarker, P., Lloyd, N., & Rangan, B. V. (2009). Bond behaviour of reinforced fly ash-based geopolymer concrete beams. Concrete Solutions 09, The 24th Biennial Conf of the Concrete Inst of Austra- lia, pp. 1–10.
  • 37. Çelik, A. İ., Özbayrak, A., Şener, A., & Acar, M. C. (2022). Effect of activators in different ratios on compressive strength of geopolymer concrete. Can J Civ Eng, 50(2), 69–79. [CrossRef]
  • 38. Çelik, A. İ., Özbayrak, A., Şener, A., & Acar, M. C. (2022). Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. J Sustain Constr Mater Technol, 7(2), 70–80. [CrossRef]
  • 39. Shrestha, R., Baweja, D., Neupane, K., Chalmers, D., & Sleep, P. (2013). Mechanical properties of geo- polymer concrete: Applicability of relationships de- fined by AS 3600. Concrete Inst of Australia-Biennial Conf, 3600(2014), 3600.
  • 40. Chi, M. (2012). Effects of dosage of alkali-activat- ed solution and curing conditions on the properties and durability of alkali-activated slag concrete. Con- str Build Mater, 35, 240–245. [CrossRef]
  • 41. Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2019). Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordi- nary Portland cement concrete. Constr Build Mater, 196, 26–42. [CrossRef]
  • 42. Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/ slag based geopolymer concrete: A review. J Clean Prod, 270, 122389. [CrossRef]
  • 43. Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali activated flyash/Ka- olin based geopolymer concrete. Constr Build Mater, 98, 685–691. [CrossRef]
  • 44. Erfanimanesh, A., & Sharbatdar, M. K. (2020). Me- chanical and microstructural characteristics of geo- polymer paste, mortar, and concrete containing lo- cal zeolite and slag activated by sodium carbonate. J Build Eng, 32, 101781. [CrossRef]
  • 45. Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long- term durability properties of geopolymer concrete: An in-depth review. Case Stud Constr Mater, 15, e00661. [CrossRef]
  • 46. Wardhono, A., Gunasekara, C., Law, D. W., & Se- tunge, S. (2017). Comparison of long-term per- formance between alkali activated slag and fly ash geopolymer concretes. Constr Build Mater, 143, 272–279. [CrossRef]
  • 47. Meng, Q., Wu, C., Hao, H., Li, J., Wu, P., Yang, Y., & Wang, Z. (2020). Steel fibre reinforced alkali-activat- ed geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel. Constr Build Mater, 246(3), 118447. [CrossRef]
  • 48. Nguyen, K. T., Ahn, N., Le, T. A., & Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Constr Build Mater, 106, 65–77. [CrossRef]
  • 49. Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Constr Build Mater, 120, 251–264. [CrossRef]
  • 50. Acar, M. C., Şener, A., Özbayrak, A., & Çelik, A. İ. (2020). The effect of zeolite additive on geopolymer mortars. J Eng Sci Des, 8(3), 820–832. [CrossRef]
  • 51. Lee, W. K. W., & Van Deventer, J. S. J. (2002). Struc- tural reorganisation of class F fly ash in alkaline sili- cate solutions. Colloids Surf A Physicochem Eng Asp, 211(1), 49–66. [CrossRef]
  • 52. ACI Committee 318. (2014). ACI 318-14: Building Code Requirements for Structural Concrete and Commentary.
  • 53. Turkish Standarts. (2000). Requirements for design and construction of reinforced concrete structures. TS-500.
  • 54. Bhushan H. Shinde, & Dr. Kshitija N. Kadam. (2015). Properties of fly ash based geopolymer mor- tar. Int J Eng Res, 4(7), 971–974. [CrossRef]
  • 55. Özbayrak, A., Kucukgoncu, H., Atas, O., Aslanbay, H. H., Aslanbay, Y. G., & Altun, F. (2023). Determi- nation of stress-strain relationship based on alkali activator ratios in geopolymer concretes and devel- opment of empirical formulations. Structures, 48, 2048–2061. [CrossRef]
  • 56. Prachasaree, W., Limkatanyu, S., Samakrattakit, A., & Hawa, A. (2014). Development of equivalent stress block parameters for fly-ash-based geopolymer con- crete. Arab J Sci Eng, 39, 8549–8558. [CrossRef]
  • 57. Tempest, B., Gergely, J., & Skipper, A. (2016). Re- inforced geopolymer cement concrete in flexure: A closer look at stress-strain performance and equivalent stress-block parameters. PCI J, 61(6), 30–43. [CrossRef]
  • 58. Tran, T. T., Pham, T. M., & Hao, H. (2019). Rect- angular stress-block parameters for fly-ash and slag based geopolymer concrete. Structures, 19, 143–155. [CrossRef]
  • 59. Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geo- polymer concrete. Curtin University of Technology, pp. 1–94.
  • 60. Farooq, F., Rahman, S. K. U., Akbar, A., Khushnood, R. A., Javed, M. F., alyousef, R., alabduljabbar, H., & aslam, F. (2020). A comparative study on perfor- mance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar. Alex Eng J, 59(1), 369–379. [CrossRef]
  • 61. Viet Hung, T., Duy Tien, N., & Van Dong, D. (2017). Experimental study on section curvature and duc- tility of reinforced geopolymer concrete beams. Sci J Transp, 8, 3–11.
  • 62. Fernández-Jiménez, A. M., Palomo, A., & López-Hombrados, C. (2006). Engineering proper- ties of alkali-activated fly ash concrete. ACI Mater J, 103(2), 106–112. [CrossRef]
  • 63. Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cem Concr Compos, 112, 103665. [CrossRef ]
  • 64. Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cem Concr Res, 37(2), 251–257. [CrossRef ]
  • 65. Mohammed, A. A., Ahmed, H. U., & Mosavi, A. (2021). Survey of mechanical properties of geopoly- mer concrete: A comprehensive review and data analysis. Materials, 14(16), 4690. [CrossRef]
  • 66. Verma, M., Dev, N., & Research, O. (2021). Geo- polymer concrete: A sustainable and economic concrete via experimental analysis. https://www.re- searchsquare.com/article/rs-185150/v1 [CrossRef ]
  • 67. Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechan- ical properties of alkali-activated concrete: A state-of-the-art review. Constr Build Mater, 127, 68–79. [CrossRef ]
  • 68. Cong, X., Zhou, W., & Elchalakani, M. (2020). Ex- perimental study on the engineering properties of alkali-activated GGBFS/FA concrete and consti- tutive models for performance prediction. Constr Build Mater, 240, 117977. [CrossRef]
  • 69. Xin, L., Xu, J. Y., Li, W., & Bai, E. (2014). Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Ma- ter Lett, 124, 310–312. [CrossRef]
  • 70. Ou, Z., Feng, R., Mao, T., & Li, N. (2022). Influence of mixture design parameters on the static and dy- namic compressive properties of slag-based geo- polymer concrete. J Build Eng, 53, 104564. [CrossRef]
  • 71. Huda, M. N., Jumat, M. Z. Bin, & Islam, A. B. M. S. (2016). Flexural performance of reinforced oil palm shell & palm oil clinker concrete (PSCC) beam. Constr Build Mater, 127, 18–25. [CrossRef]
  • 72. Yap, S. P., Bu, C. H., Alengaram, U. J., Mo, K. H., & Jumaat, M. Z. (2014). Flexural toughness char- acteristics of steel–polypropylene hybrid fibre-rein- forced oil palm shell concrete. Mater Des, 57, 652– 659. [CrossRef ]
  • 73. Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N., & Deng, Y. (2020). Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem Concr Compos, 112, 103670. [CrossRef]
  • 74. Bhutta, A., Borges, P. H. R., Zanotti, C., Farooq, M., & Banthia, N. (2017). Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem Concr Compos, 80, 31–40. [CrossRef]
  • 75. Zhang, H., Wan, K., Wu, B., & Hu, Z. (2021). Flex- ural behavior of reinforced geopolymer concrete beams with recycled coarse aggregates. Adv Struct Eng, 24(14), 3281–3298. [CrossRef]
  • 76. Özbayrak, A., Kucukgoncu, H., Aslanbay, H. H., Aslanbay, Y. G., & Atas, O. (2023). Comprehensive experimental analysis of the effects of elevated tem- peratures in geopolymer concretes with variable al- kali activator ratios. J Build Eng, 68, 106108. [CrossRef]
  • 77. Aslanbay, Y. G., Aslanbay, H. H., Özbayrak, A., Kucukgoncu, H., & Atas, O. (2024). Comprehensive analysis of experimental and numerical results of bond strength and mechanical properties of fly ash based GPC and OPC concrete. Constr Build Mater, 416, 135175. [CrossRef]
  • 78. Cecen, F., Özbayrak, A., & Aktaş, B. (2023). Experi- mental modal analysis of fly ash-based geopolymer concrete specimens via modal circles, mode indica- tion functions, and mode shape animations. Cem Concr Compos, 137, 104951. [CrossRef]

Experimental investigation of the effect of longitudinal tensile reinforcement ratio on ductility behaviour in GPC beams

Yıl 2024, Cilt: 9 Sayı: 2, 114 - 127, 24.06.2024
https://doi.org/10.47481/jscmt.1499749

Öz

This research first determined the strength of the cylindrical geopolymer concrete materi- als under compressive stresses. Secondly, conventional and geopolymer-reinforced concrete beams were manufactured in different reinforcement ratios, and their mechanical properties were compared under bending. The main aim of this study is to experimentally compare the effect of reinforcement ratio on the ductility behavior of an alkali-activated geopolymer con- crete (GPC) beam with that of an ordinary Portland cement (OPC) beam. First, balanced reinforcement calculations were made considering the mechanical properties obtained from the material tests. The load-displacement, moment-curvature, and crack development results obtained from beam tests are interpreted with this information. OPC and GPC beams exhibit- ed similar strength and crack development behavior. However, the behavior of GPC and OPC concretes differs regarding the ductility index. Therefore, to achieve similar ductility in the conduct of GPC and OPC beams, the balanced reinforcement ratio and section dimensions of GPC beams should be chosen to be larger than OPC.

Destekleyen Kurum

This research was financially supported by the Kayseri University Projects Unit (BAP-FKB-2020-1013).

Proje Numarası

BAP-FKB-2020-1013

Kaynakça

  • 1. Visintin, P., Mohamed Ali, M. S., Albitar, M., & Lu- cas, W. (2017). Shear behavior of geopolymer con- crete beams without stirrups. Constr Build Mater, 148, 10–21. [CrossRef]
  • 2. Lloyd, N., & Rangan, B. (2010). Geopolymer con- crete: A review of development and opportunities. In 35th Conference on Our World in Concrete and Structures, pp. 25–27.
  • 3. Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and early age physical properties of ambient cured geopolymer mortar based on Class C fly ash. Int J Concr Struct Mater, 9(1), 35–43. [CrossRef]
  • 4. Luhar, S., Chaudhary, S., & Luhar, I. (2019). De- velopment of rubberized geopolymer concrete: Strength and durability studies. Constr Build Mater, 204, 740–753. [CrossRef]
  • 5. Madheswaran, C. K., Ambily, P. S., Dattatreya, J. K., & Ramesh, G. (2015). Experimental studies on be- haviour of reinforced geopolymer concrete beams subjected to monotonic static loading. J Inst Eng In- dia Ser A, 96(2), 139–149. [CrossRef]
  • 6. Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. J Mater Sci, 42(9), 2917–2933. [CrossRef ]
  • 7. Pham, D. Q., Nguyen, T. N., Le, S. T., Pham, T. T., & Ngo, T. D. (2021). The structural behaviours of steel reinforced geopolymer concrete beams: An experi- mental and numerical investigation. Structures, 33, 567–580. [CrossRef ]
  • 8. Tyson, S., & Tayabji, S. (2010). Geopolymer Con- [22] crete (No. FHWA-HIF-10-014). United States. Federal Highway Administration.
  • 9. Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R., & Zarina, Y. (2012). The [23] processing, characterization, and properties of fly ash based geopolymer concrete. Rev Adv Mater Sci, 30(1), 90–97. [24]
  • 10. Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater, 47, 409–418. [CrossRef] [25]
  • 11. Fernandez-Jimenez, A., Palomo, A., & Lopez-Hom- brados, C. (2006). Engineering properties of alka- li-activated fly ash concrete. ACI Mater J, 103(2), 106. [CrossRef] [26]
  • 12. Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B. (2004). On the development of fly ash-based geopolymer concrete. Mater J, 101(6), 467–472. [CrossRef ] [27]
  • 13. Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B. (2004). Properties of geopolymer concrete with fly ash as source material: Effect of mixture composition. Spec Publ, 222, 109–118. [28]
  • 14. Delair, S., Prud’homme, É., Peyratout, C., Smith, A., Michaud, P., Eloy, L., Joussein, E., & Rossignol, S. (2012). Durability of inorganic foam in solution: The role of alkali elements in the geopolymer net- [29] work. Corros Sci, 59, 213–221. [CrossRef]
  • 15. Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geo- polymer produced by granulated blast furnace slag. Miner Eng, 16(3), 205–210. [CrossRef] [30]
  • 16. Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structur- al and material performance of geopolymer concrete: A review. Constr Build Mater, 186, 90–102. [CrossRef]
  • 17. Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2005). Behaviour and strength of reinforced [31] fly ash-based geopolymer concrete beams. Australian Structural Engineering Conference 2005, pp. 453.
  • 18. Sumajouw, M. D. J., & Rangan, B. V. R. (2006). Low-calcium fly ash-based geopolymer concrete: [32] Reinforced beams and columns. Curtin Univ Technol. https://espace.curtin.edu.au/bitstream/ handle/20.500.11937/23928/19466_downloaded_ [33] stream_558.pdf
  • 19. Dattatreya, J., Rajamane, N., Sabitha, D., Ambily, P., & Nataraja, M. (2011). Flexural behaviour of rein- forced geopolymer concrete beams. Int J Civ Struct [34] Eng, 2(1), 138–159.
  • 20. Yost, J. R., Radlińska, A., Ernst, S., Salera, M., & Martignetti, N. J. (2013). Structural behavior of al- [35] kali activated fly ash concrete. Part. Structural testing and experimental findings. Mater Struct, 46(3), 449–462. [CrossRef ] [36]
  • 21. Kumaravel, S., & Thirugnanasambandam, S. (2013). Flexural behaviour of reinforced low calcium fly ash based geopolymer concrete beam. Glob J Res Eng, 13(8), 8–14.
  • 22. Kumaravel, S., Thirugnanasambandam, S., & Jeyase- har, A. (2014). Flexural behavior of geopolymer concrete beams with GGBS. IUP J Struct Eng, 7(1), 45–54.
  • 23. Yodsudjai, W. (2014). Application of fly ash-based geopolymer for structural member and repair materi- als. 13th Int Ceram Congr - Part F, 92, 74–83. [CrossRef]
  • 24. Madheswaran, C., Ambily, P., Rajamane, N., & Arun, G. (2014). Studies on flexural behaviour of reinforced geopolymer concrete beams with lightweight aggre- gates. Int J Civ Struct Eng, 4(3), 295–305.
  • 25. [CrossRef] Hutagi, A., & Khadiranaikar, R. B. (2016). Flexural behavior of reinforced geopolymer concrete beams. Int Conf Electr Electron Optim Tech, ICEEOT 2016, 3463–3467. [CrossRef ]
  • 26. Kumar, P. U., & Kumar, B. S. (2016). Flexural be- haviour of reinforced geopolymer concrete beams with GGBS and metakaoline. Int J Civ Eng Technol, 7(6), 260–277.
  • 27. Zhang, H., Wan, K., Wu, B., & Hu, Z. (2021). Flex- ural behavior of reinforced geopolymer concrete beams with recycled coarse aggregates. Adv Struct Eng, 24(14), 3281–3298. [CrossRef]
  • 28. Alex, A. G., Gebrehiwet, T., Kemal, Z., & Subramani- an, R. B. (2022). Structural performance of low-cal- cium fly ash geopolymer reinforced concrete beam. Iran J Sci Technol Trans Civ Eng, 46(1) 1–12. [CrossRef]
  • 29. Jeyasehar, C., Saravanan, G., & Salahuddin, M. (2013). Development of fly ash based geopolymer precast concrete elements. Asian J Civ Eng (BHRC), 14(4), 605–616
  • 30. Zinkaah, O. H., Araba, A., & Alhawat, M. (2021). Performance of ACI code for predicting the flex- ural capacity and deflection of reinforced geopoly- mer concrete beams. IOP Conf Ser Mater Sci Eng, 1090(1), 012067. [CrossRef]
  • 31. Srinivasan, S., Karthik, A., & Nagan, D. S. (2014). An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams. Int J Eng Sci Res Technol, 3(4), 1963–1968.
  • 32. Devika, C. P., Deepthi, R. (2015). Study of flexural behavior of hybrid fiber reinforced geopolymer con- crete beam. Int J Sci Res (IJSR), 4(7), 130–135.
  • 33. Kumar, V. S., Ganesan, N., & Indira, P. V. (2021). Shear strength of hybrid fibre-reinforced ternary blend geopolymer concrete beams under flexure. Materials, 14(21), 6634. [CrossRef]
  • 34. Abraham, R., Raj, S., & Abraham, V. (2013). Strength and behaviour of geopolymer concrete beams. Int J Innov Res Sci Eng Technol, 2(1), 159–166.
  • 35. Mourougane, R., Puttappa, C., Sashidhar, C., & Muthu, K. (2012). Shear behaviour of high strength GPC/TVC beams. Proc Int Conf Adv Arch Civ Eng, 21, 142.
  • 36. Chang, E. H., Sarker, P., Lloyd, N., & Rangan, B. V. (2009). Bond behaviour of reinforced fly ash-based geopolymer concrete beams. Concrete Solutions 09, The 24th Biennial Conf of the Concrete Inst of Austra- lia, pp. 1–10.
  • 37. Çelik, A. İ., Özbayrak, A., Şener, A., & Acar, M. C. (2022). Effect of activators in different ratios on compressive strength of geopolymer concrete. Can J Civ Eng, 50(2), 69–79. [CrossRef]
  • 38. Çelik, A. İ., Özbayrak, A., Şener, A., & Acar, M. C. (2022). Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. J Sustain Constr Mater Technol, 7(2), 70–80. [CrossRef]
  • 39. Shrestha, R., Baweja, D., Neupane, K., Chalmers, D., & Sleep, P. (2013). Mechanical properties of geo- polymer concrete: Applicability of relationships de- fined by AS 3600. Concrete Inst of Australia-Biennial Conf, 3600(2014), 3600.
  • 40. Chi, M. (2012). Effects of dosage of alkali-activat- ed solution and curing conditions on the properties and durability of alkali-activated slag concrete. Con- str Build Mater, 35, 240–245. [CrossRef]
  • 41. Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2019). Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordi- nary Portland cement concrete. Constr Build Mater, 196, 26–42. [CrossRef]
  • 42. Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/ slag based geopolymer concrete: A review. J Clean Prod, 270, 122389. [CrossRef]
  • 43. Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali activated flyash/Ka- olin based geopolymer concrete. Constr Build Mater, 98, 685–691. [CrossRef]
  • 44. Erfanimanesh, A., & Sharbatdar, M. K. (2020). Me- chanical and microstructural characteristics of geo- polymer paste, mortar, and concrete containing lo- cal zeolite and slag activated by sodium carbonate. J Build Eng, 32, 101781. [CrossRef]
  • 45. Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long- term durability properties of geopolymer concrete: An in-depth review. Case Stud Constr Mater, 15, e00661. [CrossRef]
  • 46. Wardhono, A., Gunasekara, C., Law, D. W., & Se- tunge, S. (2017). Comparison of long-term per- formance between alkali activated slag and fly ash geopolymer concretes. Constr Build Mater, 143, 272–279. [CrossRef]
  • 47. Meng, Q., Wu, C., Hao, H., Li, J., Wu, P., Yang, Y., & Wang, Z. (2020). Steel fibre reinforced alkali-activat- ed geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel. Constr Build Mater, 246(3), 118447. [CrossRef]
  • 48. Nguyen, K. T., Ahn, N., Le, T. A., & Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Constr Build Mater, 106, 65–77. [CrossRef]
  • 49. Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Constr Build Mater, 120, 251–264. [CrossRef]
  • 50. Acar, M. C., Şener, A., Özbayrak, A., & Çelik, A. İ. (2020). The effect of zeolite additive on geopolymer mortars. J Eng Sci Des, 8(3), 820–832. [CrossRef]
  • 51. Lee, W. K. W., & Van Deventer, J. S. J. (2002). Struc- tural reorganisation of class F fly ash in alkaline sili- cate solutions. Colloids Surf A Physicochem Eng Asp, 211(1), 49–66. [CrossRef]
  • 52. ACI Committee 318. (2014). ACI 318-14: Building Code Requirements for Structural Concrete and Commentary.
  • 53. Turkish Standarts. (2000). Requirements for design and construction of reinforced concrete structures. TS-500.
  • 54. Bhushan H. Shinde, & Dr. Kshitija N. Kadam. (2015). Properties of fly ash based geopolymer mor- tar. Int J Eng Res, 4(7), 971–974. [CrossRef]
  • 55. Özbayrak, A., Kucukgoncu, H., Atas, O., Aslanbay, H. H., Aslanbay, Y. G., & Altun, F. (2023). Determi- nation of stress-strain relationship based on alkali activator ratios in geopolymer concretes and devel- opment of empirical formulations. Structures, 48, 2048–2061. [CrossRef]
  • 56. Prachasaree, W., Limkatanyu, S., Samakrattakit, A., & Hawa, A. (2014). Development of equivalent stress block parameters for fly-ash-based geopolymer con- crete. Arab J Sci Eng, 39, 8549–8558. [CrossRef]
  • 57. Tempest, B., Gergely, J., & Skipper, A. (2016). Re- inforced geopolymer cement concrete in flexure: A closer look at stress-strain performance and equivalent stress-block parameters. PCI J, 61(6), 30–43. [CrossRef]
  • 58. Tran, T. T., Pham, T. M., & Hao, H. (2019). Rect- angular stress-block parameters for fly-ash and slag based geopolymer concrete. Structures, 19, 143–155. [CrossRef]
  • 59. Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geo- polymer concrete. Curtin University of Technology, pp. 1–94.
  • 60. Farooq, F., Rahman, S. K. U., Akbar, A., Khushnood, R. A., Javed, M. F., alyousef, R., alabduljabbar, H., & aslam, F. (2020). A comparative study on perfor- mance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar. Alex Eng J, 59(1), 369–379. [CrossRef]
  • 61. Viet Hung, T., Duy Tien, N., & Van Dong, D. (2017). Experimental study on section curvature and duc- tility of reinforced geopolymer concrete beams. Sci J Transp, 8, 3–11.
  • 62. Fernández-Jiménez, A. M., Palomo, A., & López-Hombrados, C. (2006). Engineering proper- ties of alkali-activated fly ash concrete. ACI Mater J, 103(2), 106–112. [CrossRef]
  • 63. Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cem Concr Compos, 112, 103665. [CrossRef ]
  • 64. Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cem Concr Res, 37(2), 251–257. [CrossRef ]
  • 65. Mohammed, A. A., Ahmed, H. U., & Mosavi, A. (2021). Survey of mechanical properties of geopoly- mer concrete: A comprehensive review and data analysis. Materials, 14(16), 4690. [CrossRef]
  • 66. Verma, M., Dev, N., & Research, O. (2021). Geo- polymer concrete: A sustainable and economic concrete via experimental analysis. https://www.re- searchsquare.com/article/rs-185150/v1 [CrossRef ]
  • 67. Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechan- ical properties of alkali-activated concrete: A state-of-the-art review. Constr Build Mater, 127, 68–79. [CrossRef ]
  • 68. Cong, X., Zhou, W., & Elchalakani, M. (2020). Ex- perimental study on the engineering properties of alkali-activated GGBFS/FA concrete and consti- tutive models for performance prediction. Constr Build Mater, 240, 117977. [CrossRef]
  • 69. Xin, L., Xu, J. Y., Li, W., & Bai, E. (2014). Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Ma- ter Lett, 124, 310–312. [CrossRef]
  • 70. Ou, Z., Feng, R., Mao, T., & Li, N. (2022). Influence of mixture design parameters on the static and dy- namic compressive properties of slag-based geo- polymer concrete. J Build Eng, 53, 104564. [CrossRef]
  • 71. Huda, M. N., Jumat, M. Z. Bin, & Islam, A. B. M. S. (2016). Flexural performance of reinforced oil palm shell & palm oil clinker concrete (PSCC) beam. Constr Build Mater, 127, 18–25. [CrossRef]
  • 72. Yap, S. P., Bu, C. H., Alengaram, U. J., Mo, K. H., & Jumaat, M. Z. (2014). Flexural toughness char- acteristics of steel–polypropylene hybrid fibre-rein- forced oil palm shell concrete. Mater Des, 57, 652– 659. [CrossRef ]
  • 73. Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N., & Deng, Y. (2020). Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem Concr Compos, 112, 103670. [CrossRef]
  • 74. Bhutta, A., Borges, P. H. R., Zanotti, C., Farooq, M., & Banthia, N. (2017). Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem Concr Compos, 80, 31–40. [CrossRef]
  • 75. Zhang, H., Wan, K., Wu, B., & Hu, Z. (2021). Flex- ural behavior of reinforced geopolymer concrete beams with recycled coarse aggregates. Adv Struct Eng, 24(14), 3281–3298. [CrossRef]
  • 76. Özbayrak, A., Kucukgoncu, H., Aslanbay, H. H., Aslanbay, Y. G., & Atas, O. (2023). Comprehensive experimental analysis of the effects of elevated tem- peratures in geopolymer concretes with variable al- kali activator ratios. J Build Eng, 68, 106108. [CrossRef]
  • 77. Aslanbay, Y. G., Aslanbay, H. H., Özbayrak, A., Kucukgoncu, H., & Atas, O. (2024). Comprehensive analysis of experimental and numerical results of bond strength and mechanical properties of fly ash based GPC and OPC concrete. Constr Build Mater, 416, 135175. [CrossRef]
  • 78. Cecen, F., Özbayrak, A., & Aktaş, B. (2023). Experi- mental modal analysis of fly ash-based geopolymer concrete specimens via modal circles, mode indica- tion functions, and mode shape animations. Cem Concr Compos, 137, 104951. [CrossRef]
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Betonarme Yapılar, Yapı Malzemeleri, Yapı Mühendisliği
Bölüm Makaleler
Yazarlar

Ahmet Özbayrak 0000-0002-8091-4990

Ali İhsan Çelik 0000-0001-7233-7647

Mehmet Cemal Acar 0000-0002-3241-5353

Ahmet Şener 0000-0001-7562-7631

Proje Numarası BAP-FKB-2020-1013
Erken Görünüm Tarihi 15 Haziran 2024
Yayımlanma Tarihi 24 Haziran 2024
Gönderilme Tarihi 14 Nisan 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Özbayrak, A., Çelik, A. İ., Acar, M. C., Şener, A. (2024). Experimental investigation of the effect of longitudinal tensile reinforcement ratio on ductility behaviour in GPC beams. Journal of Sustainable Construction Materials and Technologies, 9(2), 114-127. https://doi.org/10.47481/jscmt.1499749

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr