Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x,y]) = 0 for all x,y ∈ R, iii) if [d(x),y] = [α(x),y] for all x,y ∈ R, iv) if d(x)◦y = 0 for all x,y ∈ R, v) if d(x◦y) = 0 for all x,y ∈ R.
∗-derivation ∗-α-derivation left ∗-centralizer left α-∗-centralizer
Birincil Dil | İngilizce |
---|---|
Bölüm | Basic Sciences and Engineering |
Yazarlar | |
Yayımlanma Tarihi | 31 Temmuz 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 2 Sayı: 3 |