Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT of the USE of DIFFERENT NANOFLUIDS on the HEAT TRANSFER PERFORMANCE of a HEAT EXCHANGER

Yıl 2022, Sayı: 050, 181 - 199, 30.09.2022

Öz

The most important problem of heating and cooling systems is the removal of heat from the system. Heat exchangers are the most critical equipment of such systems. However, the use of nanofluids has increased significantly in recent years due to the design limitation of heat exchangers. In this study, the effect of using different nanofluids on the heat transfer performance of a heat exchanger was numerically investigated. A 3D heat exchanger model was created and the thermal performance of the system was analyzed by using different types of fluids at different fluid velocities. Analyzes were performed using the ANSYS Fluent program. According to the results obtained, the highest heat transfer increase was obtained in MgO-TiO2 nanofluid with 33.4% at 0.05 m/s compared to water. The highest and lowest heat transfer rates were calculated with 202.73 W for MgO-TiO2 nanofluid and 121.59 W for PGW (propylene glycol-water mixture) fluid, respectively.

Teşekkür

The author thanks the editorial board for their help and reviewers for constructive comments and suggestions that helped to improve the quality of the article.

Kaynakça

  • [1] Narrein, K. and Mohammed, H. A. (2014), Heat transfer and fluid flow characteristics in helically coiled tube heat exchanger (HCTHE) using nanofluids: A review. Journal of Computational and Theoretical Nanoscience, 11 (4), 911-927.
  • [2] Etghani, M. M. and Baboli, S. A. H. (2017), Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Applied Thermal Engineering, 121, 294-301.
  • [3] Shahrul, I. M., Mahbubul, I. M., Saidur, R., Khaleduzzaman, S. S., Sabri, M. F. M. and Rahman, M. M. (2014), Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numerical Heat Transfer, Part A: Applications, 65 (7), 699-713.
  • [4] Caner, M., Duman, N., Buyruk, E. and Kılınç, F. (2019), Yatay toprak kaynaklı ısı pompası sisteminin sivas şartlarında performans analizi. Journal of Science and Technology of Dumlupınar University, (042), 47-53.
  • [5] Kılınç, F., Buyruk, E. and Karabulut, K. (2019), Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi. Journal of the Institute of Science and Technology, 9 (2), 1046-1056.
  • [6] Kılınç, F., Buyruk, E. and Caner, M. (2019), Sivas ili şartlarinda yatay toprak kaynaklı ısı pompasının ısıtma ve soğutma için performans analizi. Politeknik Dergisi, 22 (4), 1039-1044.
  • [7] Kılınç, F. and Başcıl, D. (2020), Soğutma sezonu için yatay toprak kaynaklı ısı pompası ekserji analizi: Sivas ili örneği. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (2), 797-806.
  • [8] Kılınç, F. and Uygun, C. Z. (2022), Exergy analysis of graphene-based nanofluids in a compact heat exchanger. Isı Bilimi ve Tekniği Dergisi, 42 (1), 101-112.
  • [9] Das, U. D., Hossain, M. A. M., Ahamed, J.U. and Razzaq, M. E. A. (2022), Heat transfer and exergy analysis of a shell and tube heat exchanger using PGW based ZnO nanofluids. International Journal of Automotive and Mechanical Engineering, 19 (2), 9773-9789.
  • [10] Sundar, L.S., Singh, M. K. and Sousa, A. C. M. (2014), Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73-83.
  • [11] Celen, A. (2022), Energy and exergy analysis of a shell and tube heat exchangers having smooth and corrugated inner tubes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 26 (1), 171-181.
  • [12] Huang, D., Wu, Z. and Sunden, B. (2016), Effects of hybrid nanofluid mixture in plate heat exchangers. Experimental Thermal and Fluid Science, 72, 190-196.
  • [13] Alshayji, A., Asadi, A. and Alarifi, I. M. (2020), On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology, 373, 397-410.
  • [14] ANSYS. (2016), ANSYS Fluent 18.2, ANSYS Inc.
  • [15] Mousavi, S.M., Esmaeilzadeh, F. and Wang, X.P.. (2019), A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. Journal of Molecular Liquids, 282, 323-339.
  • [16] Izadi, M., Behzadmehr, A. and Jalali-Vahid, D. (2009), Numerical study of developing laminar forced convection of a nanofluid in an annulus. International Journal of Thermal Science, 48, 2119-2129.
Yıl 2022, Sayı: 050, 181 - 199, 30.09.2022

Öz

Kaynakça

  • [1] Narrein, K. and Mohammed, H. A. (2014), Heat transfer and fluid flow characteristics in helically coiled tube heat exchanger (HCTHE) using nanofluids: A review. Journal of Computational and Theoretical Nanoscience, 11 (4), 911-927.
  • [2] Etghani, M. M. and Baboli, S. A. H. (2017), Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Applied Thermal Engineering, 121, 294-301.
  • [3] Shahrul, I. M., Mahbubul, I. M., Saidur, R., Khaleduzzaman, S. S., Sabri, M. F. M. and Rahman, M. M. (2014), Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numerical Heat Transfer, Part A: Applications, 65 (7), 699-713.
  • [4] Caner, M., Duman, N., Buyruk, E. and Kılınç, F. (2019), Yatay toprak kaynaklı ısı pompası sisteminin sivas şartlarında performans analizi. Journal of Science and Technology of Dumlupınar University, (042), 47-53.
  • [5] Kılınç, F., Buyruk, E. and Karabulut, K. (2019), Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi. Journal of the Institute of Science and Technology, 9 (2), 1046-1056.
  • [6] Kılınç, F., Buyruk, E. and Caner, M. (2019), Sivas ili şartlarinda yatay toprak kaynaklı ısı pompasının ısıtma ve soğutma için performans analizi. Politeknik Dergisi, 22 (4), 1039-1044.
  • [7] Kılınç, F. and Başcıl, D. (2020), Soğutma sezonu için yatay toprak kaynaklı ısı pompası ekserji analizi: Sivas ili örneği. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (2), 797-806.
  • [8] Kılınç, F. and Uygun, C. Z. (2022), Exergy analysis of graphene-based nanofluids in a compact heat exchanger. Isı Bilimi ve Tekniği Dergisi, 42 (1), 101-112.
  • [9] Das, U. D., Hossain, M. A. M., Ahamed, J.U. and Razzaq, M. E. A. (2022), Heat transfer and exergy analysis of a shell and tube heat exchanger using PGW based ZnO nanofluids. International Journal of Automotive and Mechanical Engineering, 19 (2), 9773-9789.
  • [10] Sundar, L.S., Singh, M. K. and Sousa, A. C. M. (2014), Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73-83.
  • [11] Celen, A. (2022), Energy and exergy analysis of a shell and tube heat exchangers having smooth and corrugated inner tubes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 26 (1), 171-181.
  • [12] Huang, D., Wu, Z. and Sunden, B. (2016), Effects of hybrid nanofluid mixture in plate heat exchangers. Experimental Thermal and Fluid Science, 72, 190-196.
  • [13] Alshayji, A., Asadi, A. and Alarifi, I. M. (2020), On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology, 373, 397-410.
  • [14] ANSYS. (2016), ANSYS Fluent 18.2, ANSYS Inc.
  • [15] Mousavi, S.M., Esmaeilzadeh, F. and Wang, X.P.. (2019), A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. Journal of Molecular Liquids, 282, 323-339.
  • [16] Izadi, M., Behzadmehr, A. and Jalali-Vahid, D. (2009), Numerical study of developing laminar forced convection of a nanofluid in an annulus. International Journal of Thermal Science, 48, 2119-2129.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Ferhat Kılınç 0000-0003-2707-6438

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 27 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 050

Kaynak Göster

IEEE F. Kılınç, “THE EFFECT of the USE of DIFFERENT NANOFLUIDS on the HEAT TRANSFER PERFORMANCE of a HEAT EXCHANGER”, JSR-A, sy. 050, ss. 181–199, Eylül 2022.