Research Article
BibTex RIS Cite
Year 2025, Issue: 060, 107 - 125, 25.03.2025
https://doi.org/10.59313/jsr-a.1614678

Abstract

References

  • [1] C. A. Balanis, Antenna theory: analysis and design. John Wiley & Wons, 2016.
  • [2] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook. Artech House, Canton, MA, 2001.
  • [3] D. M. Pozar and D. H. Schaubert (Eds.), Microstrip antennas—The analysis and design of microstrip antennas and arrays. IEEE Press, New York, 1995.
  • [4] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 2-24, 1981. https://doi.org/10.1109/TAP.1981.1142523.
  • [5] B. Hiçdurmaz and F.G.Ömer, “Design and analysis of 28 GHz microstrip patch antenna for diferent type FR4 claddings,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, pp. 265-288, 2019. https://doi.org/10.17482/uumfd.548410.
  • [6] I. J. Bahl and P. Bhartia, Microstrip antennas. Dedham, MA. Artech House, 1980.
  • [7] J. R. James, P. S. Hall, and C. Wood, Microstrip antennas-theory and design. London, UK: Peter Peregrinus, 1981.
  • [8] D. L. Sengupta, “Approximate expression for the resonant frequency of a rectangular patch antenna,” Electronics Letters, vol. 20, no. 19, pp. 834-835, 1983. https://doi.org/10.1049/el:19830568.
  • [9] R. Garg and S. A. Long, “Resonant frequency of electrically thick rectangular microstrip antennas,” Electronics Letters, vol. 21, no. 23, pp. 1149-1151, 1987. https://doi.org/10.1049/el:19870801.
  • [10] D. Karaboga, K. Guney, S. Sagiroglu, and M. Erler, “Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas,” IEE Proceedings Microwave Antennas and Propagation, vol. 146, no. 2, pp. 155-156, 1999. https://doi.org/10.1049/ip-map:19990136.
  • [11] Z. Wang, X. Li, S. Fang, and Y. Liu, “An accurate edge extension formula for calculating resonant frequency of electrically thin and thick rectangular patch antennas with and without air gaps,” IEEE Access, vol. 4, pp. 2388-2397, 2016. https://doi.org/10.1109/ACCESS.2016.2565684.
  • [12] K. Guney, “A new edge extension expression for the resonant frequency of rectangular microstrip antennas with thin and thick substrates,” Journal of Communications Technology and Electronics, vol. 49, no. 1, pp. 49-53, 2004.
  • [13] A. Akdagli, “An empirical expression for the edge extension in calculating resonant frequency of rectangular microstrip antennas with thin and thick substrates,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 9, pp. 1247-1255, 2007. https://doi.org/10.1163/156939307794731222.
  • [14] A. Akdagli, “A closed-form expression for the resonant frequency of rectangular microstrip antennas,” Microwave Optical Technology Letters, vol. 49, no. 8, pp. 1848-1852, 2007. https://doi.org/10.1002/mop.22572.
  • [15] E. Chang, S. A. Long, and W. F. Richards, , “An experimental investigation of electrically thick rectangular microstrip antennas,” IEEE Transaction on Antennas and Propagation, vol. 34, no. 6, pp. 767-772, 1986. https://doi.org/10.1109/TAP.1986.1143890.
  • [16] K. Guney, “A new edge extension expression for the resonant frequency of electrically thick rectangular microstrip antennas,” International Journal of Electronics, vol. 75, no. 4, pp. 767-770, 1993. https://doi.org/10.1080/00207219308907154.
  • [17] I. Lee and A. V. Vorst, “Resonant-frequency calculation for electrically thick rectangular microstrip patch antennas using a dielectric-looded inhomogeneous cavity model,” Microwave Optical Technology Letters, vol. 7, no. 15, pp. 704-708, 1994. https://doi.org/10.1002/mop.4650071509.
  • [18] M. Kara, “The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 11, no 2, pp. 55-59, 1996. https://doi.org/10.1002/(SICI)1098-2760(19960205)11:2<55::AID-MOP1>3.0.CO;2-N.
  • [19] M. Kara, “Formulas for the computation of the physical properties of rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 12, no. 4, pp. 234-239, 1996. https://doi.org/10.1002/(SICI)1098-2760(199607)12:4<234::AID-MOP15>3.0.CO;2-A.
  • [20] M. Kara, “Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates,” Microwave Optical Technology Letters, vol. 12, no. 3, pp. 131-136, 1996. https://doi.org/10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I.
  • [21] M. Kara, “Empirical formulas for the computation of the physical properties of rectangular microstrip antenna elements with thick substrates,” Microwave Optical Technology Letters, vol. 14, no. 2, pp. 115-121. 1997. https://doi.org/10.1002/(SICI)1098-2760(19970205)14:2<115::AID-MOP12>3.0.CO;2-A.
  • [22] M. Kara, “Design considerations for rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 19, no. 2, pp. 111-121, 1998. https://doi.org/10.1002/(SICI)1098-2760(19981005)19:2<111::AID-MOP8>3.0.CO;2-J.
  • [23] K. P. Ray and G. Kumar, “Determination of the resonant frequency of microstrip antennas,” Microwave Optical Technology Letters, vol. 23, no. 2, pp. 114-117, 1999. https://doi.org/10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G.
  • [24] S. S. Pattnaik, B. Khuntia, D. C. Panda, D. K. Neog, and S. Devi, “Calculation of optimized parameters of rectangular microstrip patch antenna using genetic algorithm,” Microwave Optical Technology Letters, vol. 37, no. 6, pp. 431-433, 2003. https://doi.org/10.1002/mop.10940.
  • [25] K. Guney, “Simple and accurate formulas for the physical dimensions of rectangular microstrip antennas with thin and thick substrates,” Microwave Optical Technology Letters, vol. 44, no. 3, pp. 257-259, 2005. https://doi.org/10.1002/mop.20603.
  • [26] A. Akdagli, “CAD formulas for patch dimensions of rectangular microstrip antennas with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 49, no. 9, pp. 2197-2201, 2007. https://doi.org/10.1002/mop.22679.
  • [27] A. E. Yilmaz and M. Kuzuoglu, “Calculation of optimized parameters of rectangular microstrip patch antenna using particle swarm optimization,” Microwave Optical Technology Letters, vol. 49, no. 12, pp. 2905-2907, 2007. https://doi.org/10.1002/mop.22918.
  • [28] R. W. Dearnley and A. R. F. Barel, “A comparison of models to determine the resonant frequencies of a rectangular microstrip antenna,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 1, pp. 114–118, 1989. https://doi.org/10.1109/8.192173.
  • [29] L. Merad, F. T. Bendimerad, and S. M. Meriah, “Design and resonant frequency calculation of rectangular microstrip antennas,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24, no. 2, pp. 144-153, 2011. https://doi.org/10.1002/jnm.767.
  • [30] D. Ustun, F. Toktas, and A. Toktas, “An optimized surrogate model using differential evolution algorithm for computing parameters of antennas,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 2, e2951, 2022. https://doi.org/10.1002/jnm.2951.
  • [31] T. Yu‐Bo, Z. Su‐Ling, and L. Jing‐Yi, “Modeling resonant frequency of microstrip antenna based on neural network ensemble,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24, no. 1, pp. 78-88, 2011. https://doi.org/10.1002/jnm.761.
  • [32] E. O. Hammerstad, “Equations for microstrip circuits design,” Proceeding of the Fifth European Microwave Conference, Hamburg, 1975, pp. 268–272. https://doi.org/10.1109/euma.1975.332206.
  • [33] E. Suganya, T. A. J. M. Pushpa, and T. Prabhu, “Advancements in patch antenna design for Sub-6 GHz 5G smartphone application: a comprehensive review.” Wireless Personal Communications, vol. 137, no. 4, pp. 2217-2252, 2024. https://doi.org/10.1007/s11277-024-11484-7.
  • [34] A. S. A. Gaid, M. A. M. Ali, A. Saif, and W. A. A. Mohammed, “Design and analysis of a low profile, high gain rectangular microstrip patch antenna for 28 GHz applications,” Cogent Engineering, 11: 2322827, 2024. https://doi.org/10.1080/23311916.2024.2322827.
  • [35] K. Sharma and G. P. Pandey, “Efficient modelling of compact microstrip antenna using machine learning,” AEU-International Journal of Electronics and Communications, 135:153739, 2021. https://doi.org/10.1016/j.aeue.2021.153739.
  • [36] A. Farahbakhsh and D. Zarifi, “Miniaturization of patch antennas by curved edges,” AEU-International Journal of Electronics and Communications, 117:153125, 2020. https://doi.org/10.1016/j.aeue.2020.153125.
  • [37] A. A. Elijah and M. Mokayef, “Miniature microstrip antenna for IoT application,” Materials Today: Proceedings, vol. 29, pp. 43-47, 2020. https://doi.org/10.1016/j.matpr.2020.05.678.
  • [38] O. W. Ata, M. Salamin, and K. Abusabha, “Double U-slot rectangular patch antenna for multiband applications,” Computers and Electrical Engineering, 84:106608, 2020. https://doi.org/10.1016/j.compeleceng.2020.106608.
  • [39] C. A. Diniz, L. A. Costa, O. M. da Costa Pereira-Filho, and F. J. da Silva Moreira, “Fringing field correction for spherical–rectangular microstrip antennas,” AEU-International Journal of Electronics and Communications, 127:153447, 2020. https://doi.org/10.1016/j.aeue.2020.153447.
  • [40] F. C. Acıkaya and B. S. Yıldırım, “A dual-band microstrip patch antenna for 2.45/5-GHz WLAN applications,” AEU-International Journal of Electronics and Communications, 141:153957, 2021. https://doi.org/10.1016/j.aeue.2021.153957.
  • [41] O. Ossa-Molina and F. López-Giraldo, “A simple model to compute the characteristic parameters of a slotted rectangular microstrip patch antenna,” Electronics, vol. 11, no. 1, p. 129, 2022. https://doi.org/10.3390/electronics11010129.
  • [42] H. Yiğit and K. Karayahşi, “A novel model-based technique to improve design processes for microstrip antennas,” AEU-International Journal of Electronics and Communications, 162:154570, 2023. https://doi.org/10.1016/j.aeue.2023.154570.
  • [43] A. J. Kulkarni and P. Siarry, Handbook of AI-based metaheuristics, CRC Press, 2022.
  • [44] R. Storn and K. Price, “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1997. https://doi.org/10.1023/A:1008202821328.
  • [45] K. Guney and D. Karaboga, “New narrow aperture dimension expressions obtained by using a differential evolution algorithm for optimum gain pyramidal horns,” Journal of Electromagnetic Waves and Applications, vol. 18, no. 3, pp. 321-339, 2004. https://doi.org/10.1163/156939304323085694.
  • [46] X. F. Luo, A. Qing, and C. K. Lee, “Application of the differential evolution strategy to the design of frequency-selective surfaces,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 15, no. 2, pp. 173-180, 2005. https://doi.org/10.1002/mmce.20065.
  • [47] A. Akdagli and M. E. Yuksel, “Application of differential evolution algorithm to the modeling of laser diode nonlinearity in a radio-over-fiber network,” Microwave Optical Technology Letters, vol. 48, no. 6, pp. 1130-1133, 2006. https://doi.org/10.1002/mop.21560.
  • [48] C. Yildiz, A. Akdagli, and M. Turkmen, “Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar striplines,” Microwave Optical Technology Letters, vol. 48, no. 6, pp. 1133-1137, 2006. https://doi.org/10.1002/mop.21559.
  • [49] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 53, no. 1, pp. 38-49, 2011. https://doi.org/10.1109/MAP.2011.5773566.
  • [50] B. Hiçdurmaz, H. Temurtaş, S. E. Karlık, and G. Yılmaz, “A novel method degrading the combined effect of FWM and ASE noise in WDM systems containing in-line optical amplifiers,” Optik, vol. 124, no. 19, pp. 4064-4071, 2013. https://doi.org/10.1016/j.ijleo.2012.12.071.
  • [51] J. S. Muñoz-Reina, M. G. Villarreal-Cervantes, and L. G. Corona-Ramírez, “Integrated design of a lower limb rehabilitation mechanism using differential evolution,” Computers and Electrical Engineering, vol. 92:107103, 2021. https://doi.org/10.1016/j.compeleceng.2021.107103.
  • [52] J. Kennedy and R. Eberhart, “Particle swarm optimization,” In Proceedings of ICNN'95-International Conference on Neural Networks, 1995, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  • [53] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), 1998, pp. 69-73. https://doi.org/10.1109/ICEC.1998.699146.
  • [54] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1945-1950. https://doi.org/10.1109/CEC.1999.785511.
  • [55] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, 2004. https://doi.org/10.1109/TAP.2004.823969.
  • [56] N. Jin and Y. Rahmat-Samii, “Particle swarm optimization for antenna designs in engineering electromagnetics,” Journal of Artificial Evolution and Applications, 2008. https://doi.org/10.1155/2008/728929.
  • [57] W. C. Weng and C. T. Choi, “Optimization comparison between Taguchi's method and PSO by design of a CPW slot antenna,” In 2009 IEEE Antennas and Propagation Society International Symposium, 2009, pp. 1-4. https://doi.org/10.1109/APS.2009.5171497.
  • [58] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Computing, vol. 22, pp. 387-408, 2018. https://doi.org/10.1007/s00500-016-2474-6.
  • [59] T. M. Shami, A. A. El-Saleh, M. Alswaitti, and Q. Al-Tashi, “Summakieh, M. A., Mirjalili, S. Particle swarm optimization: A comprehensive survey,” IEEE Access, vol. 10, pp. 10031-10061, 2022. https://doi.org/10.1109/ACCESS.2022.3142859.
  • [60] X. Xiang, X. Yan, C. Gao, S. Zhu, M. Xi, and H. Gao, “A circle chaos random search strategy particle swarm optimization with its application,” Computers and Electrical Engineering, 102:108219, 2022. https://doi.org/10.1016/j.compeleceng.2022.108219.
  • [61] B. Hiçdurmaz, “Determination of the optimal input channel powers using particle swarm optimization algorithm in a WDM system with In-Line optical amplifiers,” Optical Fiber Technology, 77:103254, 2023. https://doi.org/10.1016/j.yofte.2023.103254.

Determining alternative patch sizes for rectangular microstrip antennas using DE and PSO algorithms

Year 2025, Issue: 060, 107 - 125, 25.03.2025
https://doi.org/10.59313/jsr-a.1614678

Abstract

With the rapid development of mobile devices, designing microstrip antennas with various patch dimensions and shapes for the same resonant frequency fr has become increasingly important for better performance and compact design. This study introduces an original theoretical approach for the analysis and design of conventional rectangular patch microstrip antennas (RPMAs). The proposed method focuses on individually optimizing the dimensions of the patch using the differential evolution (DE) algorithm and the particle swarm optimization (PSO) algorithm to estimate fr of conventional RPMAs. Alternative solutions are presented at fr of 6.2 GHz for the specified search spaces of the patch dimensions using both the DE and PSO algorithms. The performance of both algorithms is evaluated comparatively over 30 runs. Additionally, the results obtained from the optimization algorithms are validated using the method of moments (MoM) -based IE3D software program, where the position of the probe feed is optimized. The best S11 performance achieved from the optimizations for the 6.2 GHz resonant frequency is an S11 value of -50.28 dB, with a -10 dB impedance bandwidth of 280 MHz. Furthermore, the validity of the IE3D program is tested against the resonant frequencies of some RPMAs determined experimentally from the literature, demonstrating relatively good agreement.

References

  • [1] C. A. Balanis, Antenna theory: analysis and design. John Wiley & Wons, 2016.
  • [2] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook. Artech House, Canton, MA, 2001.
  • [3] D. M. Pozar and D. H. Schaubert (Eds.), Microstrip antennas—The analysis and design of microstrip antennas and arrays. IEEE Press, New York, 1995.
  • [4] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 2-24, 1981. https://doi.org/10.1109/TAP.1981.1142523.
  • [5] B. Hiçdurmaz and F.G.Ömer, “Design and analysis of 28 GHz microstrip patch antenna for diferent type FR4 claddings,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, pp. 265-288, 2019. https://doi.org/10.17482/uumfd.548410.
  • [6] I. J. Bahl and P. Bhartia, Microstrip antennas. Dedham, MA. Artech House, 1980.
  • [7] J. R. James, P. S. Hall, and C. Wood, Microstrip antennas-theory and design. London, UK: Peter Peregrinus, 1981.
  • [8] D. L. Sengupta, “Approximate expression for the resonant frequency of a rectangular patch antenna,” Electronics Letters, vol. 20, no. 19, pp. 834-835, 1983. https://doi.org/10.1049/el:19830568.
  • [9] R. Garg and S. A. Long, “Resonant frequency of electrically thick rectangular microstrip antennas,” Electronics Letters, vol. 21, no. 23, pp. 1149-1151, 1987. https://doi.org/10.1049/el:19870801.
  • [10] D. Karaboga, K. Guney, S. Sagiroglu, and M. Erler, “Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas,” IEE Proceedings Microwave Antennas and Propagation, vol. 146, no. 2, pp. 155-156, 1999. https://doi.org/10.1049/ip-map:19990136.
  • [11] Z. Wang, X. Li, S. Fang, and Y. Liu, “An accurate edge extension formula for calculating resonant frequency of electrically thin and thick rectangular patch antennas with and without air gaps,” IEEE Access, vol. 4, pp. 2388-2397, 2016. https://doi.org/10.1109/ACCESS.2016.2565684.
  • [12] K. Guney, “A new edge extension expression for the resonant frequency of rectangular microstrip antennas with thin and thick substrates,” Journal of Communications Technology and Electronics, vol. 49, no. 1, pp. 49-53, 2004.
  • [13] A. Akdagli, “An empirical expression for the edge extension in calculating resonant frequency of rectangular microstrip antennas with thin and thick substrates,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 9, pp. 1247-1255, 2007. https://doi.org/10.1163/156939307794731222.
  • [14] A. Akdagli, “A closed-form expression for the resonant frequency of rectangular microstrip antennas,” Microwave Optical Technology Letters, vol. 49, no. 8, pp. 1848-1852, 2007. https://doi.org/10.1002/mop.22572.
  • [15] E. Chang, S. A. Long, and W. F. Richards, , “An experimental investigation of electrically thick rectangular microstrip antennas,” IEEE Transaction on Antennas and Propagation, vol. 34, no. 6, pp. 767-772, 1986. https://doi.org/10.1109/TAP.1986.1143890.
  • [16] K. Guney, “A new edge extension expression for the resonant frequency of electrically thick rectangular microstrip antennas,” International Journal of Electronics, vol. 75, no. 4, pp. 767-770, 1993. https://doi.org/10.1080/00207219308907154.
  • [17] I. Lee and A. V. Vorst, “Resonant-frequency calculation for electrically thick rectangular microstrip patch antennas using a dielectric-looded inhomogeneous cavity model,” Microwave Optical Technology Letters, vol. 7, no. 15, pp. 704-708, 1994. https://doi.org/10.1002/mop.4650071509.
  • [18] M. Kara, “The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 11, no 2, pp. 55-59, 1996. https://doi.org/10.1002/(SICI)1098-2760(19960205)11:2<55::AID-MOP1>3.0.CO;2-N.
  • [19] M. Kara, “Formulas for the computation of the physical properties of rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 12, no. 4, pp. 234-239, 1996. https://doi.org/10.1002/(SICI)1098-2760(199607)12:4<234::AID-MOP15>3.0.CO;2-A.
  • [20] M. Kara, “Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates,” Microwave Optical Technology Letters, vol. 12, no. 3, pp. 131-136, 1996. https://doi.org/10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I.
  • [21] M. Kara, “Empirical formulas for the computation of the physical properties of rectangular microstrip antenna elements with thick substrates,” Microwave Optical Technology Letters, vol. 14, no. 2, pp. 115-121. 1997. https://doi.org/10.1002/(SICI)1098-2760(19970205)14:2<115::AID-MOP12>3.0.CO;2-A.
  • [22] M. Kara, “Design considerations for rectangular microstrip antenna elements with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 19, no. 2, pp. 111-121, 1998. https://doi.org/10.1002/(SICI)1098-2760(19981005)19:2<111::AID-MOP8>3.0.CO;2-J.
  • [23] K. P. Ray and G. Kumar, “Determination of the resonant frequency of microstrip antennas,” Microwave Optical Technology Letters, vol. 23, no. 2, pp. 114-117, 1999. https://doi.org/10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G.
  • [24] S. S. Pattnaik, B. Khuntia, D. C. Panda, D. K. Neog, and S. Devi, “Calculation of optimized parameters of rectangular microstrip patch antenna using genetic algorithm,” Microwave Optical Technology Letters, vol. 37, no. 6, pp. 431-433, 2003. https://doi.org/10.1002/mop.10940.
  • [25] K. Guney, “Simple and accurate formulas for the physical dimensions of rectangular microstrip antennas with thin and thick substrates,” Microwave Optical Technology Letters, vol. 44, no. 3, pp. 257-259, 2005. https://doi.org/10.1002/mop.20603.
  • [26] A. Akdagli, “CAD formulas for patch dimensions of rectangular microstrip antennas with various substrate thicknesses,” Microwave Optical Technology Letters, vol. 49, no. 9, pp. 2197-2201, 2007. https://doi.org/10.1002/mop.22679.
  • [27] A. E. Yilmaz and M. Kuzuoglu, “Calculation of optimized parameters of rectangular microstrip patch antenna using particle swarm optimization,” Microwave Optical Technology Letters, vol. 49, no. 12, pp. 2905-2907, 2007. https://doi.org/10.1002/mop.22918.
  • [28] R. W. Dearnley and A. R. F. Barel, “A comparison of models to determine the resonant frequencies of a rectangular microstrip antenna,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 1, pp. 114–118, 1989. https://doi.org/10.1109/8.192173.
  • [29] L. Merad, F. T. Bendimerad, and S. M. Meriah, “Design and resonant frequency calculation of rectangular microstrip antennas,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24, no. 2, pp. 144-153, 2011. https://doi.org/10.1002/jnm.767.
  • [30] D. Ustun, F. Toktas, and A. Toktas, “An optimized surrogate model using differential evolution algorithm for computing parameters of antennas,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 2, e2951, 2022. https://doi.org/10.1002/jnm.2951.
  • [31] T. Yu‐Bo, Z. Su‐Ling, and L. Jing‐Yi, “Modeling resonant frequency of microstrip antenna based on neural network ensemble,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24, no. 1, pp. 78-88, 2011. https://doi.org/10.1002/jnm.761.
  • [32] E. O. Hammerstad, “Equations for microstrip circuits design,” Proceeding of the Fifth European Microwave Conference, Hamburg, 1975, pp. 268–272. https://doi.org/10.1109/euma.1975.332206.
  • [33] E. Suganya, T. A. J. M. Pushpa, and T. Prabhu, “Advancements in patch antenna design for Sub-6 GHz 5G smartphone application: a comprehensive review.” Wireless Personal Communications, vol. 137, no. 4, pp. 2217-2252, 2024. https://doi.org/10.1007/s11277-024-11484-7.
  • [34] A. S. A. Gaid, M. A. M. Ali, A. Saif, and W. A. A. Mohammed, “Design and analysis of a low profile, high gain rectangular microstrip patch antenna for 28 GHz applications,” Cogent Engineering, 11: 2322827, 2024. https://doi.org/10.1080/23311916.2024.2322827.
  • [35] K. Sharma and G. P. Pandey, “Efficient modelling of compact microstrip antenna using machine learning,” AEU-International Journal of Electronics and Communications, 135:153739, 2021. https://doi.org/10.1016/j.aeue.2021.153739.
  • [36] A. Farahbakhsh and D. Zarifi, “Miniaturization of patch antennas by curved edges,” AEU-International Journal of Electronics and Communications, 117:153125, 2020. https://doi.org/10.1016/j.aeue.2020.153125.
  • [37] A. A. Elijah and M. Mokayef, “Miniature microstrip antenna for IoT application,” Materials Today: Proceedings, vol. 29, pp. 43-47, 2020. https://doi.org/10.1016/j.matpr.2020.05.678.
  • [38] O. W. Ata, M. Salamin, and K. Abusabha, “Double U-slot rectangular patch antenna for multiband applications,” Computers and Electrical Engineering, 84:106608, 2020. https://doi.org/10.1016/j.compeleceng.2020.106608.
  • [39] C. A. Diniz, L. A. Costa, O. M. da Costa Pereira-Filho, and F. J. da Silva Moreira, “Fringing field correction for spherical–rectangular microstrip antennas,” AEU-International Journal of Electronics and Communications, 127:153447, 2020. https://doi.org/10.1016/j.aeue.2020.153447.
  • [40] F. C. Acıkaya and B. S. Yıldırım, “A dual-band microstrip patch antenna for 2.45/5-GHz WLAN applications,” AEU-International Journal of Electronics and Communications, 141:153957, 2021. https://doi.org/10.1016/j.aeue.2021.153957.
  • [41] O. Ossa-Molina and F. López-Giraldo, “A simple model to compute the characteristic parameters of a slotted rectangular microstrip patch antenna,” Electronics, vol. 11, no. 1, p. 129, 2022. https://doi.org/10.3390/electronics11010129.
  • [42] H. Yiğit and K. Karayahşi, “A novel model-based technique to improve design processes for microstrip antennas,” AEU-International Journal of Electronics and Communications, 162:154570, 2023. https://doi.org/10.1016/j.aeue.2023.154570.
  • [43] A. J. Kulkarni and P. Siarry, Handbook of AI-based metaheuristics, CRC Press, 2022.
  • [44] R. Storn and K. Price, “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1997. https://doi.org/10.1023/A:1008202821328.
  • [45] K. Guney and D. Karaboga, “New narrow aperture dimension expressions obtained by using a differential evolution algorithm for optimum gain pyramidal horns,” Journal of Electromagnetic Waves and Applications, vol. 18, no. 3, pp. 321-339, 2004. https://doi.org/10.1163/156939304323085694.
  • [46] X. F. Luo, A. Qing, and C. K. Lee, “Application of the differential evolution strategy to the design of frequency-selective surfaces,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 15, no. 2, pp. 173-180, 2005. https://doi.org/10.1002/mmce.20065.
  • [47] A. Akdagli and M. E. Yuksel, “Application of differential evolution algorithm to the modeling of laser diode nonlinearity in a radio-over-fiber network,” Microwave Optical Technology Letters, vol. 48, no. 6, pp. 1130-1133, 2006. https://doi.org/10.1002/mop.21560.
  • [48] C. Yildiz, A. Akdagli, and M. Turkmen, “Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar striplines,” Microwave Optical Technology Letters, vol. 48, no. 6, pp. 1133-1137, 2006. https://doi.org/10.1002/mop.21559.
  • [49] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 53, no. 1, pp. 38-49, 2011. https://doi.org/10.1109/MAP.2011.5773566.
  • [50] B. Hiçdurmaz, H. Temurtaş, S. E. Karlık, and G. Yılmaz, “A novel method degrading the combined effect of FWM and ASE noise in WDM systems containing in-line optical amplifiers,” Optik, vol. 124, no. 19, pp. 4064-4071, 2013. https://doi.org/10.1016/j.ijleo.2012.12.071.
  • [51] J. S. Muñoz-Reina, M. G. Villarreal-Cervantes, and L. G. Corona-Ramírez, “Integrated design of a lower limb rehabilitation mechanism using differential evolution,” Computers and Electrical Engineering, vol. 92:107103, 2021. https://doi.org/10.1016/j.compeleceng.2021.107103.
  • [52] J. Kennedy and R. Eberhart, “Particle swarm optimization,” In Proceedings of ICNN'95-International Conference on Neural Networks, 1995, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  • [53] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), 1998, pp. 69-73. https://doi.org/10.1109/ICEC.1998.699146.
  • [54] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1945-1950. https://doi.org/10.1109/CEC.1999.785511.
  • [55] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, 2004. https://doi.org/10.1109/TAP.2004.823969.
  • [56] N. Jin and Y. Rahmat-Samii, “Particle swarm optimization for antenna designs in engineering electromagnetics,” Journal of Artificial Evolution and Applications, 2008. https://doi.org/10.1155/2008/728929.
  • [57] W. C. Weng and C. T. Choi, “Optimization comparison between Taguchi's method and PSO by design of a CPW slot antenna,” In 2009 IEEE Antennas and Propagation Society International Symposium, 2009, pp. 1-4. https://doi.org/10.1109/APS.2009.5171497.
  • [58] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Computing, vol. 22, pp. 387-408, 2018. https://doi.org/10.1007/s00500-016-2474-6.
  • [59] T. M. Shami, A. A. El-Saleh, M. Alswaitti, and Q. Al-Tashi, “Summakieh, M. A., Mirjalili, S. Particle swarm optimization: A comprehensive survey,” IEEE Access, vol. 10, pp. 10031-10061, 2022. https://doi.org/10.1109/ACCESS.2022.3142859.
  • [60] X. Xiang, X. Yan, C. Gao, S. Zhu, M. Xi, and H. Gao, “A circle chaos random search strategy particle swarm optimization with its application,” Computers and Electrical Engineering, 102:108219, 2022. https://doi.org/10.1016/j.compeleceng.2022.108219.
  • [61] B. Hiçdurmaz, “Determination of the optimal input channel powers using particle swarm optimization algorithm in a WDM system with In-Line optical amplifiers,” Optical Fiber Technology, 77:103254, 2023. https://doi.org/10.1016/j.yofte.2023.103254.
There are 61 citations in total.

Details

Primary Language English
Subjects Antennas and Propagation
Journal Section Research Articles
Authors

Bahadır Hiçdurmaz 0000-0002-4610-1400

Publication Date March 25, 2025
Submission Date January 6, 2025
Acceptance Date February 14, 2025
Published in Issue Year 2025 Issue: 060

Cite

IEEE B. Hiçdurmaz, “Determining alternative patch sizes for rectangular microstrip antennas using DE and PSO algorithms”, JSR-A, no. 060, pp. 107–125, March 2025, doi: 10.59313/jsr-a.1614678.