Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalın kuyruklu hasar modellerinde iflas olasılığının benzetim yöntemi ile hesabı: Trafik sigortası örneği

Yıl 2012, Cilt: 5 Sayı: 1, 1 - 13, 01.03.2012

Öz

Bu çalışmada iflas olasılığı, poliçe sayılarının, hasar ve prim süreçlerinin durağan olmayan süreçlere uyduğu bir zorunlu trafik sigortası risk süreci yapısı altında, benzetim modeli kullanılarak hesaplanmıştır. İncelenen bireysel hasar tutarlarının kalın kuyruklu log-normal dağılıma, hasar sayılarının ise Poisson dağılımına uyduğu görülmüş, dağılım parametrelerinin zamanla değişmediği varsayımı altında sürecin dinamik benzetim modeli kurulmuştur. Belirlenmiş senaryolara göre model üzerinde yapılan denemelerle iflas olasılıkları elde edilmiştir. Aynı süreçte, iflas olasılığı kalın kuyruklu hasar dağılımlarına özgün formüller ışığında elde edilmiştir. Sonuçların birbirine benzer çıktığı ve bu sebeple zorunlu trafik sigorta portföyü için benzetim modeli kullanılarak çeşitli senaryolar altında iflas olasılıklarını elde etmenin mümkün olduğu gösterilmiştir

Kaynakça

  • Bulut B., Erdemir C, 2011, Ruin probability in heavy tailed risk models ,Journal of Statisticans, vol 4, no:2 pp 39-56.
  • Chistyakov, V.P., 1964, A theorem on sums of independent positive random variables and its applications to branching random processes, Theory probability Application 9, pp 640-649.
  • Embrechts, P., Goldie, C.M., 1982, On convolution tails, Stochastic Processes Applied 13, pp 263-278.
  • Embrechts, P., Klüppelberg C., Mikosch T., 2001, Modelling Extremal Events for Insurance and Fınance, Applications of Mathematics Stochastic Modelling and Applied Probability 33 , Springer, 648p.
  • Dickson, D. C. M., 2005, Insurance Risk and Ruin, Cambridge University Pres.
  • Goldie, C. M., Klüppelberg C., 1998, Subexponential Distributions, A practical guide to heavy tails: statistical techniques and applications, pp 435-460.
  • Gottfried, B., 1984, Elements of Stochastic Process Simulation, Prentice-Hal, New Jersey.
  • Ross, S. M., 2006, Simulation, Elsevier, Amsterdam.
  • Ross, S.M., 2003, Introduction to Probability Models, Academic Press, Amsterdam.

Calculation of ruin probability by simulation method with heavy tail loss models: A compulsory traffic insurance example

Yıl 2012, Cilt: 5 Sayı: 1, 1 - 13, 01.03.2012

Öz

In this study, the probability of ruin is calculated using a simulation model with the number of policies, claims

and premium processes comply with non-stationary processes, under the structure of a compulsory traffic

insurance risk process. The investigated individual claim amounts and the number of claim distributions have

been detected to fit heavy-tailed log-normal distribution and Poisson distribution respectively. Assuming that

distribution parameters do not change over time, the dynamic simulation model of the process has been

established. The ruin probabilities depending on the scenarios were obtained from experiments conducted on

the model. During the same period, the probability of ruin have been obtained with the unique formulas of the

heavy-tailed distributions. In conclusion, because of the similar results, it is shown that the calculation of ruin

probabilty is possible under the various scenarios using a simulation model for compulsory motor insurance

portfolio.

Kaynakça

  • Bulut B., Erdemir C, 2011, Ruin probability in heavy tailed risk models ,Journal of Statisticans, vol 4, no:2 pp 39-56.
  • Chistyakov, V.P., 1964, A theorem on sums of independent positive random variables and its applications to branching random processes, Theory probability Application 9, pp 640-649.
  • Embrechts, P., Goldie, C.M., 1982, On convolution tails, Stochastic Processes Applied 13, pp 263-278.
  • Embrechts, P., Klüppelberg C., Mikosch T., 2001, Modelling Extremal Events for Insurance and Fınance, Applications of Mathematics Stochastic Modelling and Applied Probability 33 , Springer, 648p.
  • Dickson, D. C. M., 2005, Insurance Risk and Ruin, Cambridge University Pres.
  • Goldie, C. M., Klüppelberg C., 1998, Subexponential Distributions, A practical guide to heavy tails: statistical techniques and applications, pp 435-460.
  • Gottfried, B., 1984, Elements of Stochastic Process Simulation, Prentice-Hal, New Jersey.
  • Ross, S. M., 2006, Simulation, Elsevier, Amsterdam.
  • Ross, S.M., 2003, Introduction to Probability Models, Academic Press, Amsterdam.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Başak Bulut

Cenap Erdemir Bu kişi benim

Yayımlanma Tarihi 1 Mart 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 1

Kaynak Göster

IEEE B. Bulut ve C. Erdemir, “Kalın kuyruklu hasar modellerinde iflas olasılığının benzetim yöntemi ile hesabı: Trafik sigortası örneği”, JSSA, c. 5, sy. 1, ss. 1–13, 2012.