Eliptik sözde-kopulalar ile esnek bağımlılık modellemesi
Yıl 2020,
Cilt: 13 Sayı: 2, 61 - 77, 31.12.2020
Övgücan Karadağ Erdemir
,
Meral Sucu
Öz
Finansal ve aktüeryal bağımlılık modellemesi çalışmalarında sıklıkla tercih edilen eliptik kopulalar, dinamik bağımlılık modellemesi elde etmek ve kuyruk bağımlılığı ile eliptik bağımlılığın modellenebilmesi gibi çeşitli nedenler ile düzenlenebilir. Düzenlenmiş sözde-kopula ile esnek bir bağımlılık modellemesi elde edilir. Bu çalışmada, düzenlenmiş sözde-kopula fonkiyonlarının düzenlemeden sonra da sözde-kopula fonksiyonu özelliğini koruduğu gösterilmiş ve bu fonksiyonların elde edilme aşamaları verilmiştir. Uygulama bölümünde, sözde-kopula fonksiyonlarının düzenlenmesinin etkinliği perspektif ve izohips eğrileri ile incelenmiş ve düzenlemenin sağladığı fayda, düzenlenmiş sözde-kopula regresyon modelleri yardımıyla gösterilmiştir.
Kaynakça
- A. Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de L’Université de Paris, 8, 229.
- E. Frees, E. Valdez, 1998, Understanding Relationships Using Copulas, North Ameracan Actuarial Journal, 2, 1.
- E. S. Sarıdaş, 2012, Bağımlı Yaşam Sürelerinin Modellenmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- Ö. Bakar, 2018, Bağımlı Çoklu Hayat Anüitelerinde Uzun Ömürlülük Riskinin Stokastik Analizi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- L. Hua, 2015, Tail Negative Dependence and Its Applications for Aggregate Loss Modeling, Insurance: Mathematics and Economics, 61, 135.
- A. Şentürk Acar, 2016, Sağlık Sigortalarında Toplam Hasar Üzerinde Heterojenliğin Etkisi, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- C. Czado, R. Kastenmeier, E.C. Brechmann, A. Min, 2012, A Mixed Copula Model for Insurance Claims and Claim Sizes, Scandinavian Actuarial Journal, 4, 278.
- R. Kastenmeier, 2008, Joint Regression Analysis of Insurance Claims and Claim Sizes, Diploma Thesis, Technische Universitat München, Mathematical Sciences.
- N. Krämer, E. C. Brechmann, D. Silvestrini, C. Czado, 2013, Total Loss Estimation Using Copula-Based Regression Models, Insurance: Mathematics and Economics, 53, 829.
- K. Wang, A. H. Lee, K. K. W. Yau, P. J. W. Carrivick, 2003, A Semisupervised Regression Model for Mixed Numerical and Categorical Variables, Accident Analysis and Prevention, 35 (4), 625.
- L. Madsen, Y. Fang, 2011, Joint Regression Analysis for Discrete Longitudinal Data, Biometrics, 67 (3), 1171.
- E. W. Frees, E. A. Valdez, 2008, Hierarchical Insurance Claims Modelling, Journal of the American Statistical Association, 5, 41.
- L. Bermúdez, D. Karlis, 2011, Bayesian multivariate Poisson models for insurance ratemaking, Insurance: Mathematics and Economics, 48 (2), 226.
- J. Ren, 2012, A Multivariate Aggregate Loss Model, Insurance: Mathematics and Economics, 51, 402.
- J. D. Cummins, L. J. Wiltbank, 1983, Estimating The Total Claims Distribution Using Multivariate Frequency and Severity Distributions, Journal of Risk and Insurance, 50 (3), 377.
- E. W. Frees, G. Myers, C. David, 2010, Dependent Multi-peril Ratemaking Models, Astin Bulletin, 40, 699.
- M. Ayuso, L. Bermúdez, M. Santolino, 2016, Copula-Based Regression Modeling of Bivariate Severity of Temporary Disability And Permanent Motor Injuries, Accident Analysis & Prevention, 89, 142.
- Y. Fang, 2014, A Bayesian Approach to Inference and Prediction for Spatially Correlated Count Data Based on Gaussian Copula Model, International Journal of Applied Mathematics, 44(3), 126.
- P. Shi, K. Shi, 2017, Territorial Risk Classification Using Spatially Dependent Frequency-Severity Models, ASTIN Bulletin: The Journal of the IAA, 47 (2), 437.
- G. Pettere, T. Kollo, 2006, Modelling Claim Size in Time via Copulas, in Transactions of 28th International Congress of Actuaries.
- P. Weke, C. Ratemo, 2013, Estimating IBNR Claims Reserves for General Insurance Using Archimedean Copulas, Applied Mathematical Sciences, 7 (25), 1223.
- E. Usta, 2016, Risk Premium Estimation in MTPL Insurance Using Copula: Turkey Case, Master of Science Thesis, The Graduate Scohool of Applied Mathematics of Middle East Technical University, Ankara.
- E. Usta, 2016, The Estimation of IBNR Reserve Using Copula, Journal of Insurance Research, 12 (10), 3.
- E. Kole, K. Koedijk, M. Verbeek, 2007, Selecting Copulas for Risk Management, Journal of Banking & Finance, 31 (8), 2405.
- B. Z. Karagül, 2013, Hayat Dışı Sigortalarda Doğrusal Olmayan Bağımlılığın Kopulalar ile Dinamik Finansal Analizi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Yüksek Lisans Tezi, Ankara.
- U. Karabey, 2015, Importance of Modelling the Dependence for Risk Capital Allocation, Journal of Statisticians: Statistics and Actuarial Sciences, 8 (1), 1.
- Z. M. Landsman, E. A. Valdez, 2003, Tail conditional expectations for elliptical distributions. North American Actuarial Journal, 7 (4), 55-71.
- D. Brigo, A. Pallavicini, R. Torresetti, 2010, Credit Models and The Crisis: A Journey Into Cdos, Copulas, Correlations And Dynamic Models, John Wiley & Sons.
- P. X.-K. Song, 2007, Correlated Data Analysis: Modeling, Analytics, And Applications. Springer Science & Business Media, Ontario, Canada.
- Y. Fang, 2012, Extensions to Gaussian Copula Models, Doctoral Dissertation, Oregon State University.
- Y. Fang, L. Madsen, 2013, Modified Gaussian Pseudo-Copula: Application in Insurance and Finance, Insurance: Mathematics and Economics, 53, 292.
- G. Masarotto, C. Varin, 2017, Gaussian Copula Regression in R, Journal of Statistical Software, 77 (8).
- A. J. Patton, 2001, Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula, UCSD Discussion Paper No. 01-09, SSRN.
- A. J. Patton, 2006, Modelling Asymmetric Exchange Rate Dependence, International Economic Review, 47 (2), 527.
- J. D. Fermanian, M. Wegkamp, 2004, Time Dependent Copulas. Preprint INSEE, Paris, France.
- J. D. Fermanian, M. Wegkamp, 2012, Time-Dependent Copulas. Journal of Multivariate Analysis, 110, 19.
- Y. Fang, L. Madsen, L. Liu, 2014, Comparison of Two Methods to Check Copula Fitting, International Journal of Applied Mathematics, 44 (1).
- M. A. Boateng, A. Y. Omari-Sasu, R. K. Avuglah, N. K. Frempong, 2017, On Two Random Variables and Archimedean Copulas, International Journal of Statistics and Applications, 7 (4), 228.
- R. B. Nelsen, 2006, An Introduction to Copulas, Springer Science & Business Media, Portland, Oregon, USA.
- R. A. Parsa, S. A. Klugman, 2011, Copula Regression, Variance Advancing and Science of Risks, 5, 45.
- U. Cherubini, S. Mulinacci, F. Gobbi, S. Romagnoli, 2011, Dynamic Copula Methods in Finance, John Wiley & Sons.
- Z. S. Ouyang, H. Liao, X. Q. Yang, 2009, Modeling Dependence Based on Mixture Copulas and Its Application in Risk Management, Applied Mathematics-A Journal of Chinese Universities, 24 (4) 393.
- Ö. G. Erdemir, 2020, Düzenlenmiş Sözde-Kopula Regresyon Modeli, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- I. Kojadinovic, J. Yan, 2010, Modeling Multivariate Distributions with Continuous Margins Using The Copula R Package, Journal of Statistical Software, 34(9) 1.
- R. N. Mortensen, 2013, Pseudo-Observations in Survival Analysis, Master of Science Thesis, Aalborg University.
- Steorts, R. C., 2015, Visualizing the Multivariate Normal, Lecture 9, http://www2.stat.duke.edu/~rcs46/lectures_2015/02-multivar2/02-multivar2.pdf.