Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’deki Matematik Başarısının İki Aşamalı Bernoulli Modeli Kullanılarak İncelenmesi

Yıl 2010, Cilt: 7 Sayı: 1, 175 - 185, 15.07.2010

Öz

Bu çalışmanın amacı, çok aşamalı modellerin özel bir durumu olan iki aşamalı Bernoulli modelini kullanarak cinsiyet, sosyo-ekonomik kültürel statü, okulun bulunduğu konum, okuldaki matematik aktiviteleri sayısı ve öğrenci öğretmen ilişkisi değişkenlerinin matematik başarısı üzerine etkilerini incelemektir. Örneklem, Türkiye’deki Uluslararası Öğrenci Değerlendirme Programı (PISA)’nın 2003 yılında katılan Türk öğrencilerden oluşmaktadır. Mevcut veri seti, 156 okulda 15 yaşındaki 4799 Türk öğrenciden oluşmaktadır. PISA çalışmasının örneklem yapısı, okulları ve okullar içindeki öğrencileri içerdiğinden iki aşamalı hiyerarşik model yapısına uygundur. Çok aşamalı regresyon analizi kullanılarak katsayılar tahmin edilmiş ve okullar karşısında farklılıklar modellenmiştir. Elde edilen bulgulara göre, matematik başarısı için okulun bulunduğu konum ve matematik aktiviteleri değişkenlerinin pozitif ve öğrenci-öğretmen ilişkisi değişkeninin de güçlü pozitif etkiye sahip olduğu tespit edilmiştir. Ayrıca ailenin sosyo-ekonomik ve kültürel statüsünün yüksek olmasının da matematik başarısını arttırdığı gösterilmiştir.

Kaynakça

  • Aksit, N., 2007. Educational reform in Turkey. International Journal of Educational Development, 27, 129-137.
  • Chiu, M., Xihua, Z., 2008. Family and motivation effects on mathematics achievement: Analyses of students in 41 countries. Learning and Instruction, 18, 321-336.
  • Chow, B. W., Chiu M. M., Mebride-Chang, C., 2007. Universals and specifics in learning strategies: Explaining adolescent mathematics, science and reading achievement across 34 countries. Learning and Individual Differences, 17, 344-365.
  • Dunn, C., Chambers, D., Rabren, K., 2004. Variables affecting students' decisions to drop out of school. Remedial and Special Education, 25, 314.
  • Dünya Bankası, 2005. Okul öncesi eğitimden orta öğretime etkili, adil ve verimli bir eğitim sisteminin sürdürülebilir yolları. Rapor No: 32450-TU.
  • Halpern, D. F., 2000. Sex differences in cognitive abilities. Third Edition, London: Erlbaum.
  • Hammouri, H. A. M., 2004. Attitudinal and motivational variables related to mathematics achievement in Jordan: findings from the Third International Mathematics and Science Study (TIMSS). Educational Research, 46(3), 241-257.
  • Heck, R. H., Thomas, S. L., 2000. An introduction to multilevel modeling techniques. Lawrence Erlbaum Associates, London.
  • Hedeker, D., Gibbons, R., 1994. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50(4), 933-944.
  • Hox, J., 1998. Multilevel modeling: When and Why?. In: Balderjahnn, I., Mathar, R., ve Schader, M. (Eds.) Classification. Data Analysis, And Data Highways, Springer, New York, 147-154.
  • Organisation for Economic Co-operation and Development, 2005. PISA 2003 Technical Report. Paris: OECD.
  • Osborne, J., W., 2000. Advantages of hierarchical linear modeling. Practical Assessment, Research and Evaluation, 7(1), Available at: http://PAREonline.net/getvn.asp?v =7&n=1 (accessed June 1, 2005).
  • Ramirez, M. J., 2006. Understanding the low mathematics achievement of Chilean students: A cross_national analysis using TIMSS data. International Journal of Educational Research, 45, 102-116.
  • Raudenbush, S. W., Bryk, A. S., 2002. Hierarchical linear models: Applications and data analysis methods. Second Edition, Thousand Oaks, Sage Publications.
  • Raudenbush, S. W., Bryk, A. Cheong, Y. F., Congdon, R., Toit, M., 2004. HLM 6: Hierarchical linear and nonlinear modeling. Lincolnwood. IL: Scientific Software International (second printing with revisions).
  • Wang, D. B., 2004. Family background factors and mathematics success: A comparison of Chinese and US students. International Journal of Educational Research, 41, 40-54.
  • Wilkins, J. L. M., 2004. Mathematics and Science Self-Concept: An International Investigation. The Journal of Experimental Education, 72(4), 331-346.

Examining of Mathematics Achievement in Turkey Using Two Level Bernoulli Model

Yıl 2010, Cilt: 7 Sayı: 1, 175 - 185, 15.07.2010

Öz

The purpose of this study was to examine the effects of gender, socioeconomical and cultural status, school location, number of mathematical activities in school and teacher-student relationship variables on mathematics achievement using two-level Bernoulli model as a special case of hierarchical generalized linear models. The sample was chosen from students who participated in Programme for International Student Assessment (PISA) in Turkey in 2003. This data consist of 4799 15-year-old Turkish students in 156 schools. This clustered data set with a two-level hierarchical structure examined students who were nested within different schools. Two levels Bernoulli model was used to estimate coefficients and to model differences across schools. Results from this study indicate that mathematics activities and school location variables have positive effects while student-teacher relation variable has strong positive effect on mathematics achievement. Also, it is shown that higher socio-economic and cultural status of students’ family is increased mathematics performance too.

Kaynakça

  • Aksit, N., 2007. Educational reform in Turkey. International Journal of Educational Development, 27, 129-137.
  • Chiu, M., Xihua, Z., 2008. Family and motivation effects on mathematics achievement: Analyses of students in 41 countries. Learning and Instruction, 18, 321-336.
  • Chow, B. W., Chiu M. M., Mebride-Chang, C., 2007. Universals and specifics in learning strategies: Explaining adolescent mathematics, science and reading achievement across 34 countries. Learning and Individual Differences, 17, 344-365.
  • Dunn, C., Chambers, D., Rabren, K., 2004. Variables affecting students' decisions to drop out of school. Remedial and Special Education, 25, 314.
  • Dünya Bankası, 2005. Okul öncesi eğitimden orta öğretime etkili, adil ve verimli bir eğitim sisteminin sürdürülebilir yolları. Rapor No: 32450-TU.
  • Halpern, D. F., 2000. Sex differences in cognitive abilities. Third Edition, London: Erlbaum.
  • Hammouri, H. A. M., 2004. Attitudinal and motivational variables related to mathematics achievement in Jordan: findings from the Third International Mathematics and Science Study (TIMSS). Educational Research, 46(3), 241-257.
  • Heck, R. H., Thomas, S. L., 2000. An introduction to multilevel modeling techniques. Lawrence Erlbaum Associates, London.
  • Hedeker, D., Gibbons, R., 1994. A random-effects ordinal regression model for multilevel analysis. Biometrics, 50(4), 933-944.
  • Hox, J., 1998. Multilevel modeling: When and Why?. In: Balderjahnn, I., Mathar, R., ve Schader, M. (Eds.) Classification. Data Analysis, And Data Highways, Springer, New York, 147-154.
  • Organisation for Economic Co-operation and Development, 2005. PISA 2003 Technical Report. Paris: OECD.
  • Osborne, J., W., 2000. Advantages of hierarchical linear modeling. Practical Assessment, Research and Evaluation, 7(1), Available at: http://PAREonline.net/getvn.asp?v =7&n=1 (accessed June 1, 2005).
  • Ramirez, M. J., 2006. Understanding the low mathematics achievement of Chilean students: A cross_national analysis using TIMSS data. International Journal of Educational Research, 45, 102-116.
  • Raudenbush, S. W., Bryk, A. S., 2002. Hierarchical linear models: Applications and data analysis methods. Second Edition, Thousand Oaks, Sage Publications.
  • Raudenbush, S. W., Bryk, A. Cheong, Y. F., Congdon, R., Toit, M., 2004. HLM 6: Hierarchical linear and nonlinear modeling. Lincolnwood. IL: Scientific Software International (second printing with revisions).
  • Wang, D. B., 2004. Family background factors and mathematics success: A comparison of Chinese and US students. International Journal of Educational Research, 41, 40-54.
  • Wilkins, J. L. M., 2004. Mathematics and Science Self-Concept: An International Investigation. The Journal of Experimental Education, 72(4), 331-346.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İstatistik
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Demir

Serpil Kılıç Bu kişi benim

Yayımlanma Tarihi 15 Temmuz 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 7 Sayı: 1

Kaynak Göster

APA Demir, İ., & Kılıç, S. (2010). Türkiye’deki Matematik Başarısının İki Aşamalı Bernoulli Modeli Kullanılarak İncelenmesi. İstatistik Araştırma Dergisi, 7(1), 175-185.