İnceleme Makalesi
BibTex RIS Kaynak Göster

Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz

Yıl 2024, Cilt: 5 Sayı: 1, 1 - 10, 21.06.2024
https://doi.org/10.53525/jster.1430072

Öz

Amputasyon; kazalar, diyabet, kanser, tümör, osteomiyelit, disvasküler hastalıklar gibi nedenlerden dolayı herhangi bir ekstremitenin tamamının ya da bir kısmının yokluğudur. Amputasyon dünya çapında milyonlarca insanın motor fonksiyonlarını ve yaşam kalitelerini etkilemektedir. Ayrıca bu engelliliğe sahip insanlar hareket yeteneklerinin azalmasının yanı sıra psikolojik olarak da etkilenmektedirler. Amputasyonlu hastaların günlük yaşama katılımlarını artırmak ve kendilerini daha iyi hissetmeleri için teknolojinin de gelişmesiyle birlikte birçok tedavi ve rehabilitasyon yöntemi geliştirilmiştir. Bu yöntemler arasında en çok kullanılan ve son yıllarda da popüler olan yapay zeka teknolojisi bulunmaktadır. Bu teknoloji ile yapılan dış iskeletler amputasyonlu hastaların hareket yeteneklerini artırmayı amaçladıkları için bu hastaların umut kaynağı olmuştur. Bu araştırma, ampute hastaların umut kaynağı olan yapay zeka tabanlı dış iskeletlerin ampute rehabilitasyonuna etkisini inceleyip kullanılan yapay zeka teknolojilerini karşılaştırmayı amaçladı. Bu amaç doğrultusunda literatür taranarak yapay zeka teknolojilerinden beyin-bilgisayar arayüzü, makine öğrenimi, derin öğrenme, yapay sinir ağlarının ampute hasta rehabilitasyonuna etkisi ile ilgili son 10 yılın araştırmaların nitel meta analizi yapıldı. Nitel meta analiz sonucunda ampute hasta rehabilitasyonunda en çok kullanılan yapay zeka teknolojisinin beyin-bilgisayar arayüzü olduğu ve kullanılan yapay zeka tabanlı dış iskeletlerin hepsinin rehabilitasyona olumlu etkisinin olduğu ayrıca bu yapay zeka teknolojileri sayesinde amputasyonlu hastaların hareket sınırlılıklarının azaldığı araştırmalarda görüldü. Fakat son yıllardaki ilerlemeci gelişmelere rağmen hala kaybedilen uzvun tam işlevini görebilecek dış iskelet üretilememiştir. Bu yüzden yapay zeka teknolojilerinin ampute hasta rehabilitasyonu üzerinde etkilerini daha iyi anlamak için gelecekte bu alanda daha çok araştırma yapılması önerilmektedir. Ek olarak kontrol paradigmalarını ve rehabilitasyon etkisini kapsamlı bir şekilde değerlendirebilmek için hem ampute denek üzerinde hem de sağlıklı denek üzerinde geniş bir popülasyona sahip daha fazla araştırmaya gerek vardır.

Kaynakça

  • [1] Zhouxiao Li, Konstantin Christoph Koban,Thilo Ludwig Schenck, Riccardo Enzo Giunta, Qingfeng Li, Yangbai Güneşi (2022). Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J. Clin. Med. 11(22), 6826.
  • [2] Persine Anran Wang, Xiaolei Xiu, Shengyu Liu,Qing Qian, Sizhu Wu (2022). Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. Int. J. Environ. Res. Public Health 19(20), 13691.
  • [3] D, Kanchana, V, Vinothkumar., D, E. Samhithan. (2021). Gesture Controlled Robotic Hand Prosthesis for Upper Limb Amputee Rehabilitation. 2021 IEEE Bombay Section Signature Conference (IBSSC), 1-5.
  • [4] Fabio Egle, Dario Di Domenico, Andrea Marinelli, Nicolò Boccardo, Michele Canepa, Matteo Laffranchi… Claudio Castellini. Preliminary Assessment of Two Simultaneous and Proportional Myocontrol Methods for 3-DoFs Prostheses Using Incremental Learning. 2023 International Conference on Rehabilitation Robotics (ICORR) (24-28.09.2023).
  • [5] Dana Terrazas-Rodas and Joanna Carrión-Pérez. The Use of Invasive and Non-Invasive Electrodes in Novel Technology of Upper Limb Prostheses: A Current Review. 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA) (23.08.2023)
  • [6] Muhammed Osman Kadir, Muhammed Awais Han, Muzammal Hüseyin, Izhar ul Haq, Nizar Ahtar, Kmaran Şah. Design and Analysis of Knee Joint for Transfemoral Amputees. 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS) (28-30.04.2021).
  • [7] Güneş, D. ve Erdem, R. (2022). Nitel araştırmaların analizi: Meta-sentez. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(Özel Sayı 2), 81-98.
  • [8] Dinçer, S. (2014). Eğitim Bilimlerinde Uygulamalı Meta Analiz. Pegem Akademi Yayıncılık, 2-25.
  • [9] Poggenpoel, M. ve Myburgh, C. P. H. (2008). A Meta-Synthesis of Completed Qualitative Research on Learners‘ Experience of Aggression in Secondary Schools in South Africa. International Journal of Violence and School, (8), 60-84.
  • [10] Uttam Chand Saini, Shubhankar Bu, Himanshu Bhayana, Mandeep Singh Dhillon, Aseem Mehra (2023). Longitudinal Experience and Determinants for Common Mental Health Problems, Phantom Limb and Functional Outcome in Lower Limb Amputees. Indian Journal of Orthopaedics, 57, 2040–2049.
  • [11] Blake Schultz , Hıristiyan Fıstığın , Nirmal Tejwani (2023). Updates on Residual Limb Management in Lower Extremity Amputation From Nerve to Bone. Bull Hosp Jt Dis (2013), 81(4): 240-248.
  • [12] M. Anisha, M. Sushmitha, S.Surekha, N. Vigneshwari, Ponmozhi Chezhiyan, C.Jim Elliot… SB Pooja. Exploration on Electroencephalogram Controlled Haptic Humanoid Arm for amputees. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (04-06.08.2021).
  • [13] Ori Cohen, Dana Doron, Moşe Koppel, Rafael Malach, Doron Friedman. High performance in brain-computer interface control of an avatar using the missing hand representation in long term amputees. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER) (25-28.05.2017).
  • [14] Lin Yao, Xiaokang Shu, Jianjun Meng, Dingguo Zhang, Xinjun Sheng, Xiangyang Zhu. Enhanced motor imagery based brain-computer interface via unilateral wrist vibrotactile stimulation. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (06-08.11.2013).
  • [15] Mustafa Ür Rehman, Kamran Şah, İzhar Ul Haq, Hasan Hurşid. A Force Myography based HMI for Classification of Upper Extremity Gestures. 2022 2nd International Conference on Artificial Intelligence (ICAI) (30-31.03.2022).
  • [16] Heather E.Williams, Ahmed W. Şehata, Michael R. Dawson, Erik Şeması, Jacqueline S. Hebert, Patrick M. Pilarski (2022). Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control. IEEE Transactions on Biomedical Engineering, 69 (7), 2243 – 2255.
  • [17] AM Elbreki, Safa Ramazan, Faysal Muhammed, Khadija Alshari, Zakariya Rajab, B. Elhub. Practical Design of an Upper Prosthetic Limb Using Three Dimensional Printer with an Artificial Intelligence Based Controller. 2022 International Conference on Engineering & MIS (ICEMIS) (04-06.07.2022).
  • [18] Dana Terrazas-Rodas and Joanna Carrión-Pérez. Artificial Intelligence Techniques for Biosignal Pattern Recognition and Classification in Upper-Limb Prostheses: A Review. 2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS) (24-26.11.2022).
  • [19] Morten B. Kristoffersen, Andreas W. Franzke, Raoul M. Bongers, Michael Wand, Alessio Murgia, Corry K. van der Sluis (2021). User training for machine learning controlled upper limb prostheses: a serious game approach. Journal of NeuroEngineering and Rehabilitation, 18, 32.
  • [20] Anh Tuan Nguyen, Jian Xu, Ming Jiang, Diu Khue Luu, Tong Wu, Wing-kin Tam… Qi Zhao (2020). A bioelectric neural interface towards intuitive prosthetic control for amputees. Journal of Neural Engineering, 17,6.
  • [21] Zheng You Lim and Neo Yong Quan. Convolutional Neural Network Based Electroencephalogram Controlled Robotic Arm. 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS) (26.06.2021).
  • [22] Bin Fang, Chengyin Wang, Fuchun Güneş, Ziming Chen, Jianhua Shan, Huaping Liu… Wenyuan Liang (2022). Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 (2426 – 2436).
  • [23] Minjae Kim, Ann M. Simon, Levi J. Hargrove (2022). Seamless and intuitive control of a powered prosthetic leg using deep neural network for transfemoral amputees. Wearable Technologies, 3.
  • [24] Elaine M. Bochniewicz, Geoff Emmer, Alexander W. Dromerick, Jessica Barth, Peter S. Lum (2023). Measurement of Functional Use in Upper Extremity Prosthetic Devices Using Wearable Sensors and Machine Learning. Sensors, 23(6).
  • [25] Markus Nowak, Raoul M. Bongers, Corry K. van der Sluis, Alin Albu-Schäffer, Claudio Castellini (2023).Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design. Journal of NeuroEngineering and Rehabilitation, 20.
  • [26] Author links open overlay panelBaao Xie, James Meng, Baihua Li, Andy Harland (2022). Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control. Computer Methods and Programs in Biomedicine, 224.
  • [27] Sachin Kansal, Dhruv Garg, Aditya Upadhyay, Snehil Mittal, Guneet Singh Talwar (2023). DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques. Engineering Applications of Artificial Intelligence, 126.
  • [28] Anh Tuan Nguyen, Jian Xu, Ming Jiang, Diu Khue Luu, Tong Wu, Wing-kin Tam… Qi Zhao (2020). A bioelectric neural interface towards intuitive prosthetic control for amputees. Journal of Neural Engineering, 17,6.
  • [29] DSV Bandara, Jumpei Arata, Kazuo Kiguchi (2018). Towards Control of a Transhumeral Prosthesis with EEG Signals. Bioengineering, 5(2), 26.
  • [30] Arnau Dillen, Elke Lathouwers, Aleksandar Miladinoviç, Uros Marusiç, Fakhreddine Ghaffari, Olivier Romain… Kevin De Pauw (2022). A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics. Front. Hum. Neurosci., 16.
  • [31] An Tuan Nguyen, Markus W Drealan, Diu Khue Luu, Ming Jiang, Jian Xu, Jonathan Cheng… Zhi Yang (2021). A Portable, Self-Contained Neuroprosthetic Hand with Deep Learning-Based Finger Control. J Neural Eng., 11;18(5).
  • [32] Douglas P.Murphy, Ou Bai, Ashraf S. Gorgey, John Fox, William T. Lovegreen, Brian W. Burkhardt… Ding-Yu Fei (2017). Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study. Front. Neurol., 8.
  • [33] G Gayathri, Ganesha Udupa, G. J. Nair. Control of bionic arm using ICA-EEG. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (06-07.07.2017).
  • [34] Mojisola Grace Asogbon, Oluwarotimi Williams Samuel, Xiangxin Li, Naifu Jiang, Naifu Jiang, Oluwagbenga Paul Idowu, Yanbing Jiang… Guanglin Li. A Low-rank Spatiotemporal based EEG Multi-Artifacts Cancellation Method for Enhanced ConvNet-DL’s Motor Imagery Characterization. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (01-05.11.2021).
  • [35] Mojisola Grace Asogbon, Oluwarotimi Williams Samuel, Xiangxin Li, Naifu Jiang, Naifu Jiang, Oluwagbenga Paul Idowu, Yanbing Jiang… Guanglin Li. A Robust Multi-Channel EEG Signals Preprocessing Method for Enhanced Upper Extremity Motor Imagery Decoding. 2020 IEEE International Conference on Mechatronics and Automation (ICMA) (13-16.10.2020).
  • [36] Diego Ronaldo Cutipa-Puma, Cristian Giovanni Coaguila-Quispe, Pablo Raul Yanyachi (2023). A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX, 14.
  • [37] Muhammad Yasin, Achmad Arifin, Muhammad Hilman Fatoni. Ankle Prosthesis With Brain Computer Interface Commands Based on Electroencephalograph for Transtibial Amputees. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA) (20-21.07.2022).
  • [38] Kaushalya Kumarasinghe, Mahonri Owen, Denise Taylor, Nikola Kasabov, Chi Kit. FaNeuRobot: A Framework for Robot and Prosthetics Control Using the NeuCube Spiking Neural Network Architecture and Finite Automata Theory. 2018 IEEE International Conference on Robotics and Automation (ICRA) (21-25.05.2018).

Artificial Intelligence Based Wearable Robotic Exoskeletons For Rehabilitation Of Amputee Patients: Meta Analysis

Yıl 2024, Cilt: 5 Sayı: 1, 1 - 10, 21.06.2024
https://doi.org/10.53525/jster.1430072

Öz

Amputation is the loss of all or part of an extremity due to accidents, diabetes, cancer, tumours, osteomyelitis, dysvascular diseases. Amputation affects the motor functions and quality of life of millions of people worldwide. In addition, people with this disability are psychologically affected as well as reduced mobility. Many treatment and rehabilitation methods have been developed with the development of technology to increase the participation of patients with amputation in daily life and to make them feel better. Among these methods, artificial intelligence technology is the most widely used and popular in recent years. Exoskeletons made with this technology have become a source of hope for amputees as they aim to increase their mobility. This research aims to examine the effect of artificial intelligence-based exoskeletons, which are the source of hope for amputees, on amputee rehabilitation and to compare the artificial intelligence technologies used. For this purpose, the literature was reviewed and a qualitative meta-analysis of the researches of the last 10 years on the effects of artificial intelligence technologies such as brain-computer interface, machine learning, deep learning, artificial neural networks on amputee patient rehabilitation was performed. As a result of the qualitative meta-analysis, it was seen that the most commonly used artificial intelligence technology in amputee patient rehabilitation is the brain-computer interface and all of the artificial intelligence-based exoskeletons used have a positive effect on rehabilitation, and thanks to these artificial intelligence technologies, the mobility limitations of patients with amputation are reduced. However, despite the progressive developments in recent years, an exoskeleton that can fully function the lost limb has still not been produced. Therefore, it is recommended to conduct more research in this field in the future to better understand the effects of artificial intelligence technologies on amputee rehabilitation. In addition, further research with a large population of both amputees and healthy subjects is needed to comprehensively evaluate the control paradigms and rehabilitation effect.

Kaynakça

  • [1] Zhouxiao Li, Konstantin Christoph Koban,Thilo Ludwig Schenck, Riccardo Enzo Giunta, Qingfeng Li, Yangbai Güneşi (2022). Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J. Clin. Med. 11(22), 6826.
  • [2] Persine Anran Wang, Xiaolei Xiu, Shengyu Liu,Qing Qian, Sizhu Wu (2022). Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. Int. J. Environ. Res. Public Health 19(20), 13691.
  • [3] D, Kanchana, V, Vinothkumar., D, E. Samhithan. (2021). Gesture Controlled Robotic Hand Prosthesis for Upper Limb Amputee Rehabilitation. 2021 IEEE Bombay Section Signature Conference (IBSSC), 1-5.
  • [4] Fabio Egle, Dario Di Domenico, Andrea Marinelli, Nicolò Boccardo, Michele Canepa, Matteo Laffranchi… Claudio Castellini. Preliminary Assessment of Two Simultaneous and Proportional Myocontrol Methods for 3-DoFs Prostheses Using Incremental Learning. 2023 International Conference on Rehabilitation Robotics (ICORR) (24-28.09.2023).
  • [5] Dana Terrazas-Rodas and Joanna Carrión-Pérez. The Use of Invasive and Non-Invasive Electrodes in Novel Technology of Upper Limb Prostheses: A Current Review. 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA) (23.08.2023)
  • [6] Muhammed Osman Kadir, Muhammed Awais Han, Muzammal Hüseyin, Izhar ul Haq, Nizar Ahtar, Kmaran Şah. Design and Analysis of Knee Joint for Transfemoral Amputees. 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS) (28-30.04.2021).
  • [7] Güneş, D. ve Erdem, R. (2022). Nitel araştırmaların analizi: Meta-sentez. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(Özel Sayı 2), 81-98.
  • [8] Dinçer, S. (2014). Eğitim Bilimlerinde Uygulamalı Meta Analiz. Pegem Akademi Yayıncılık, 2-25.
  • [9] Poggenpoel, M. ve Myburgh, C. P. H. (2008). A Meta-Synthesis of Completed Qualitative Research on Learners‘ Experience of Aggression in Secondary Schools in South Africa. International Journal of Violence and School, (8), 60-84.
  • [10] Uttam Chand Saini, Shubhankar Bu, Himanshu Bhayana, Mandeep Singh Dhillon, Aseem Mehra (2023). Longitudinal Experience and Determinants for Common Mental Health Problems, Phantom Limb and Functional Outcome in Lower Limb Amputees. Indian Journal of Orthopaedics, 57, 2040–2049.
  • [11] Blake Schultz , Hıristiyan Fıstığın , Nirmal Tejwani (2023). Updates on Residual Limb Management in Lower Extremity Amputation From Nerve to Bone. Bull Hosp Jt Dis (2013), 81(4): 240-248.
  • [12] M. Anisha, M. Sushmitha, S.Surekha, N. Vigneshwari, Ponmozhi Chezhiyan, C.Jim Elliot… SB Pooja. Exploration on Electroencephalogram Controlled Haptic Humanoid Arm for amputees. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (04-06.08.2021).
  • [13] Ori Cohen, Dana Doron, Moşe Koppel, Rafael Malach, Doron Friedman. High performance in brain-computer interface control of an avatar using the missing hand representation in long term amputees. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER) (25-28.05.2017).
  • [14] Lin Yao, Xiaokang Shu, Jianjun Meng, Dingguo Zhang, Xinjun Sheng, Xiangyang Zhu. Enhanced motor imagery based brain-computer interface via unilateral wrist vibrotactile stimulation. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (06-08.11.2013).
  • [15] Mustafa Ür Rehman, Kamran Şah, İzhar Ul Haq, Hasan Hurşid. A Force Myography based HMI for Classification of Upper Extremity Gestures. 2022 2nd International Conference on Artificial Intelligence (ICAI) (30-31.03.2022).
  • [16] Heather E.Williams, Ahmed W. Şehata, Michael R. Dawson, Erik Şeması, Jacqueline S. Hebert, Patrick M. Pilarski (2022). Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control. IEEE Transactions on Biomedical Engineering, 69 (7), 2243 – 2255.
  • [17] AM Elbreki, Safa Ramazan, Faysal Muhammed, Khadija Alshari, Zakariya Rajab, B. Elhub. Practical Design of an Upper Prosthetic Limb Using Three Dimensional Printer with an Artificial Intelligence Based Controller. 2022 International Conference on Engineering & MIS (ICEMIS) (04-06.07.2022).
  • [18] Dana Terrazas-Rodas and Joanna Carrión-Pérez. Artificial Intelligence Techniques for Biosignal Pattern Recognition and Classification in Upper-Limb Prostheses: A Review. 2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS) (24-26.11.2022).
  • [19] Morten B. Kristoffersen, Andreas W. Franzke, Raoul M. Bongers, Michael Wand, Alessio Murgia, Corry K. van der Sluis (2021). User training for machine learning controlled upper limb prostheses: a serious game approach. Journal of NeuroEngineering and Rehabilitation, 18, 32.
  • [20] Anh Tuan Nguyen, Jian Xu, Ming Jiang, Diu Khue Luu, Tong Wu, Wing-kin Tam… Qi Zhao (2020). A bioelectric neural interface towards intuitive prosthetic control for amputees. Journal of Neural Engineering, 17,6.
  • [21] Zheng You Lim and Neo Yong Quan. Convolutional Neural Network Based Electroencephalogram Controlled Robotic Arm. 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS) (26.06.2021).
  • [22] Bin Fang, Chengyin Wang, Fuchun Güneş, Ziming Chen, Jianhua Shan, Huaping Liu… Wenyuan Liang (2022). Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 (2426 – 2436).
  • [23] Minjae Kim, Ann M. Simon, Levi J. Hargrove (2022). Seamless and intuitive control of a powered prosthetic leg using deep neural network for transfemoral amputees. Wearable Technologies, 3.
  • [24] Elaine M. Bochniewicz, Geoff Emmer, Alexander W. Dromerick, Jessica Barth, Peter S. Lum (2023). Measurement of Functional Use in Upper Extremity Prosthetic Devices Using Wearable Sensors and Machine Learning. Sensors, 23(6).
  • [25] Markus Nowak, Raoul M. Bongers, Corry K. van der Sluis, Alin Albu-Schäffer, Claudio Castellini (2023).Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design. Journal of NeuroEngineering and Rehabilitation, 20.
  • [26] Author links open overlay panelBaao Xie, James Meng, Baihua Li, Andy Harland (2022). Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control. Computer Methods and Programs in Biomedicine, 224.
  • [27] Sachin Kansal, Dhruv Garg, Aditya Upadhyay, Snehil Mittal, Guneet Singh Talwar (2023). DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques. Engineering Applications of Artificial Intelligence, 126.
  • [28] Anh Tuan Nguyen, Jian Xu, Ming Jiang, Diu Khue Luu, Tong Wu, Wing-kin Tam… Qi Zhao (2020). A bioelectric neural interface towards intuitive prosthetic control for amputees. Journal of Neural Engineering, 17,6.
  • [29] DSV Bandara, Jumpei Arata, Kazuo Kiguchi (2018). Towards Control of a Transhumeral Prosthesis with EEG Signals. Bioengineering, 5(2), 26.
  • [30] Arnau Dillen, Elke Lathouwers, Aleksandar Miladinoviç, Uros Marusiç, Fakhreddine Ghaffari, Olivier Romain… Kevin De Pauw (2022). A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics. Front. Hum. Neurosci., 16.
  • [31] An Tuan Nguyen, Markus W Drealan, Diu Khue Luu, Ming Jiang, Jian Xu, Jonathan Cheng… Zhi Yang (2021). A Portable, Self-Contained Neuroprosthetic Hand with Deep Learning-Based Finger Control. J Neural Eng., 11;18(5).
  • [32] Douglas P.Murphy, Ou Bai, Ashraf S. Gorgey, John Fox, William T. Lovegreen, Brian W. Burkhardt… Ding-Yu Fei (2017). Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study. Front. Neurol., 8.
  • [33] G Gayathri, Ganesha Udupa, G. J. Nair. Control of bionic arm using ICA-EEG. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (06-07.07.2017).
  • [34] Mojisola Grace Asogbon, Oluwarotimi Williams Samuel, Xiangxin Li, Naifu Jiang, Naifu Jiang, Oluwagbenga Paul Idowu, Yanbing Jiang… Guanglin Li. A Low-rank Spatiotemporal based EEG Multi-Artifacts Cancellation Method for Enhanced ConvNet-DL’s Motor Imagery Characterization. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (01-05.11.2021).
  • [35] Mojisola Grace Asogbon, Oluwarotimi Williams Samuel, Xiangxin Li, Naifu Jiang, Naifu Jiang, Oluwagbenga Paul Idowu, Yanbing Jiang… Guanglin Li. A Robust Multi-Channel EEG Signals Preprocessing Method for Enhanced Upper Extremity Motor Imagery Decoding. 2020 IEEE International Conference on Mechatronics and Automation (ICMA) (13-16.10.2020).
  • [36] Diego Ronaldo Cutipa-Puma, Cristian Giovanni Coaguila-Quispe, Pablo Raul Yanyachi (2023). A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX, 14.
  • [37] Muhammad Yasin, Achmad Arifin, Muhammad Hilman Fatoni. Ankle Prosthesis With Brain Computer Interface Commands Based on Electroencephalograph for Transtibial Amputees. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA) (20-21.07.2022).
  • [38] Kaushalya Kumarasinghe, Mahonri Owen, Denise Taylor, Nikola Kasabov, Chi Kit. FaNeuRobot: A Framework for Robot and Prosthetics Control Using the NeuCube Spiking Neural Network Architecture and Finite Automata Theory. 2018 IEEE International Conference on Robotics and Automation (ICRA) (21-25.05.2018).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomekatronik, Yardımcı Robotlar ve Teknoloji
Bölüm İnceleme Makalesi
Yazarlar

Merve Çörekçi 0000-0002-1098-4651

Turker Erguzel 0000-0001-8438-6542

Erken Görünüm Tarihi 21 Mayıs 2024
Yayımlanma Tarihi 21 Haziran 2024
Gönderilme Tarihi 1 Şubat 2024
Kabul Tarihi 3 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA Çörekçi, M., & Erguzel, T. (2024). Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz. Journal of Science, Technology and Engineering Research, 5(1), 1-10. https://doi.org/10.53525/jster.1430072
AMA Çörekçi M, Erguzel T. Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz. JSTER. Haziran 2024;5(1):1-10. doi:10.53525/jster.1430072
Chicago Çörekçi, Merve, ve Turker Erguzel. “Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz”. Journal of Science, Technology and Engineering Research 5, sy. 1 (Haziran 2024): 1-10. https://doi.org/10.53525/jster.1430072.
EndNote Çörekçi M, Erguzel T (01 Haziran 2024) Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz. Journal of Science, Technology and Engineering Research 5 1 1–10.
IEEE M. Çörekçi ve T. Erguzel, “Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz”, JSTER, c. 5, sy. 1, ss. 1–10, 2024, doi: 10.53525/jster.1430072.
ISNAD Çörekçi, Merve - Erguzel, Turker. “Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz”. Journal of Science, Technology and Engineering Research 5/1 (Haziran 2024), 1-10. https://doi.org/10.53525/jster.1430072.
JAMA Çörekçi M, Erguzel T. Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz. JSTER. 2024;5:1–10.
MLA Çörekçi, Merve ve Turker Erguzel. “Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz”. Journal of Science, Technology and Engineering Research, c. 5, sy. 1, 2024, ss. 1-10, doi:10.53525/jster.1430072.
Vancouver Çörekçi M, Erguzel T. Ampute Hastalarin Rehabilitasyonunda Kullanilan Yapay Zeka Tabanli Giyilebilir Robotik Diş İskeletler: Meta Analiz. JSTER. 2024;5(1):1-10.
Dergide yayınlanan çalışmalar
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) Uluslararası Lisansı ile lisanslanmıştır.
by-nc-nd.png

Free counters!