Proje çizelgelemede bulanık doğrusal programlama ile yeni bir yöntem önerisi: Yazılım projesinde uygulama
Yıl 2024,
Cilt: 8 Sayı: 1, 20 - 38, 18.07.2024
Vildan Çorumlu
,
Kumru Didem Atalay
,
Esra Dinler
Öz
Projeler, başlangıç ve bitiş tarihi belli olan bir zaman diliminde kaynakların verimli bir şekilde kullanılarak çıktıların elde edildiği çalışmalardır. Proje çıktısının hızlı bir şekilde elde edilebilmesi, pazarda rekabet avantajının sağlanabilmesi amacıyla önemlidir. Bu nedenle, projenin zamanında tamamlanması ön plana çıkmaktadır. Bu aşamada proje çizelgeleme konusu büyük önem taşımaktadır. Proje çizelgelemede kullanılan birçok yöntem vardır ve Kritik Yol Metodu (CPM) ve Program Değerlendirme ve Gözden Geçirme Tekniği (PERT) bunlara örnek olarak verilebilir. Faaliyet sürelerinin belirsiz olması durumunda bu parametrelerin tahmin edilmesindeki sorunlar nedeniyle, bu yöntemler gerçek projeleri doğru ve tam olarak temsil edemeyebilir. Bulanık teori bu sorunların ortadan kaldırılması ve çizelgelemeyi iyileştirmede temel olarak kullanılan bir yoldur. Bulanık teori, parametrelerdeki belirsizlikleri, kesin olmayan veya eksik bilgiden kaynaklanan durumları dikkate alarak proje çizelgeleme modellerini gerçeğe yaklaştırır. Bu çalışmada, projenin faaliyet sürelerinde belirsizlik olması durumunda projenin tamamlanma sürelerinin belirlenmesinde bulanık doğrusal programlamayı temel alan yeni bir yöntem önerilmektedir. Önerilen yöntemin değerlendirilmesi için gerçek bir yazılım projesinde uygulama gerçekleştirilmiştir. Model sonuçları incelendiğinde üyelik dereceleri azaldıkça proje tamamlanma sürelerinin kısaldığı gözlemlenmiştir.
Kaynakça
- Ammar, M. A., ve Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International
Journal of Construction Management, 22(2), 252-261. https://doi.org/10.1080/15623599.2019.1619226
- Atlı Ö. ve Kahraman C. (2013). Bulanık Kritik Yol Analizi. Journal of Engineering and Natural Sciences
Mühendislik ve Fen Bilimleri Dergisi, Sigma (31), 128-140.
- Başar, A. (2022). Yeni bir matematiksel model ve hibrit meta sezgisel ile kaynak kısıtlı projelerin çizelgelenmesi:
Bir vaka çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1169-1184.
https://doi.org/10.17341/gazimmfd.913666
- Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., ve Yates, J. K. (2009). Construction project scheduling
with time, cost, and material restrictions using fuzzy mathematical models and critical path method. Journal of
Construction Engineering and Management, 135(10), 1096-1104. https://doi.org/10.1061/(ASCE)0733-
9364(2009)135:10(109)
- Chanas, S. ve Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and
systems, 122(2), 195-204. https://doi.org/10.1016/S0165-0114(00)00076-2
- Chen, S. P., ve Hsueh, Y. J. (2008). A simple approach to fuzzy critical path analysis in project networks. Applied
Mathematical Modelling, 32(7), 1289-1297. https://doi.org/10.1016/j.apm.2007.04.009
- Chwastyk, A. ve Pisz, I. (2020). Critical path analysis with imprecise activities times. Sustainable Economic
Development and Application of Innovation Management, 2004-2013.
https://repo.uni.opole.pl/info/article/UO6a9b4e31347445de85d73b03ece7ce3c/
- Durucasu, H., İcan, Ö., Karamaşa, Ç., Yeşilaydın, G., ve Gülcan, B. (2015). Bulanık CPM Yöntemiyle Proje
Çizelgeleme: İnşaat Sektöründe Bir Uygulama. Ege Akademik Bakış, 15 (4), 449-466.
http://www.trdizin.gov.tr/publication/paper/detail/TVRrMU16SXhNUT09
- Elkalla, I., Elbeltagi, E., ve El Shikh, M. (2021). Solving fuzzy time–cost trade-off in construction projects using
linear programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267-278.
https://doi.org/10.1007/s40030-020-00489-7
- Habibi, F., Birgani, O., Koppelaar, H. ve Radenović, S. (2018). Using fuzzy logic to improve the project time and
cost estimation based on Project Evaluation and Review Technique (PERT). Journal of Project Management, 3(4),
183-196. https://doi.org/10.5267/j.jpm.2018.4.002
- Han, T. C., Chung, C. C., ve Liang, G. S. (2006). Application of fuzzy critical path method to airports cargo ground
operation systems. Journal of Marine Science and Technology, 14(3), 2. https://doi.org/10.51400/2709-6998.2067
- Herroelen, W. ve Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European
journal of operational research, 165(2), 289-306. https://doi.org/10.1016/j.ejor.2004.04.002
ISO 21502:2020 Project, Programme and Portfolio Management – Guidance On Project Management,
Switzerland: ISO, 2020.
- Jayagowri, P. ve Geetharamani, G. (2015). Using metric distance ranking method to find intuitionistic fuzzy
critical path. Journal of Applied Mathematics, 2015. https://doi.org/10.1155/2015/952150
Kenar, E. (2021). Klasik Pert ve Bulanık Pert Yöntemleri ile Proje Yönetimi ve Bir Mermer Fabrikası
Kurulumunda Uygulaması (Doktora Tezi).
- Lai, Y. J. ve Hwang, C. L. (1992). Fuzzy mathematical programming. In Fuzzy mathematical programming (pp.
74-186). Springer, Berlin, Heidelberg.
- Li, F. ve Wei, J. (2007, September). A fuzzy approach for the project management. In 2007 International
Conference on Wireless Communications, Networking and Mobile Computing (pp. 5180-5183). IEEE.
- Liang, T. F., Huang, T. S., ve Yang, M. F. (2012). Application of fuzzy mathematical programming to imprecise
project management decisions. Quality & Quantity, 46(5), 1451-1470. https://doi.org/10.1007/s11135-011-9460-
y
- Madhuri, K. U., Saradhi, B. P. ve Shankar, N. R. (2013). Fuzzy linear programming model for critical path
analysis. Int. J. Contemp. Math. Sciences, 8(2), 93-116. https://doi.org/10.12988/ijcms.2013.13010
- Mazlum, M., ve Güneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and
implementation on a business. Procedia-Social and Behavioral Sciences, 210, 348-357.
https://doi.org/10.1016/j.sbspro.2015.11.378
- Sadjadi, S. J., Pourmoayed, R. ve Aryanezhad, M. B. (2012). A robust critical path in an environment with hybrid
uncertainty. Applied Soft Computing, 12(3), 1087-1100. https://doi.org/10.1016/j.asoc.2011.11.015
- Saradhi, B. P., Ramesh, H., Shankar, N. R. ve Shaik, R. (2021). Hesitant Fuzzy Project Planning and Scheduling
using Critical path Technique. Turkish Journal of Computer and Mathematics Education, 12(6), 5272-5286.
https://www.proquest.com/scholarly-journals/hesitant-fuzzy-project-planning-schedulingusing/
docview/2640416443/se-2?accountid=15426
- Sethupathy.G., Judson L., ve Paul V.K. (2020). Time – Cost Optimization (TCO) By Application Of Fuzzy Logic
In Construction Projects. International Journal of Creative Research Thoughts, 8(6), 479-486.
https://doi.org/10.6084/m9.doi.one.IJCRT2006070
- Shankar, N. R., Sireesha, V. ve Rao, P. P. B. (2010). An analytical method for finding critical path in a fuzzy
project network. International Journal of contemporary mathematical sciences, 5(20), 953-962.
https://api.semanticscholar.org/CorpusID:14403952
- Sireesha, V., Rao, K. S., Shankar, N. R., ve Babu, S. S. (2012). Critical path analysis in the network with fuzzy
interval numbers as activity times. intervals, 16, 21. https://doi.org/10.1016/S0165-0114(00)00076-2
- Soysal, S., Dengiz, B., ve Atalay, K. (2021). Belirsizlik altında kaynak kısıtlı çok modlu çoklu proje çizelgeleme.
Journal of Turkish Operations Management, 5(1), 598-614.
- Subulan, K. (2020). Çok amaçlı kurumsal kaynak planlaması uyarlama projelerinin insan kaynağı kısıtı ve
belirsizlik altında çizelgelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1469-1486.
https://doi.org/10.17341/gazimmfd.519652
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers & operations research, 10(4), 291-298.
https://doi.org/10.1016/0305-0548(83)90004-7
Yıl 2024,
Cilt: 8 Sayı: 1, 20 - 38, 18.07.2024
Vildan Çorumlu
,
Kumru Didem Atalay
,
Esra Dinler
Kaynakça
- Ammar, M. A., ve Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International
Journal of Construction Management, 22(2), 252-261. https://doi.org/10.1080/15623599.2019.1619226
- Atlı Ö. ve Kahraman C. (2013). Bulanık Kritik Yol Analizi. Journal of Engineering and Natural Sciences
Mühendislik ve Fen Bilimleri Dergisi, Sigma (31), 128-140.
- Başar, A. (2022). Yeni bir matematiksel model ve hibrit meta sezgisel ile kaynak kısıtlı projelerin çizelgelenmesi:
Bir vaka çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1169-1184.
https://doi.org/10.17341/gazimmfd.913666
- Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., ve Yates, J. K. (2009). Construction project scheduling
with time, cost, and material restrictions using fuzzy mathematical models and critical path method. Journal of
Construction Engineering and Management, 135(10), 1096-1104. https://doi.org/10.1061/(ASCE)0733-
9364(2009)135:10(109)
- Chanas, S. ve Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and
systems, 122(2), 195-204. https://doi.org/10.1016/S0165-0114(00)00076-2
- Chen, S. P., ve Hsueh, Y. J. (2008). A simple approach to fuzzy critical path analysis in project networks. Applied
Mathematical Modelling, 32(7), 1289-1297. https://doi.org/10.1016/j.apm.2007.04.009
- Chwastyk, A. ve Pisz, I. (2020). Critical path analysis with imprecise activities times. Sustainable Economic
Development and Application of Innovation Management, 2004-2013.
https://repo.uni.opole.pl/info/article/UO6a9b4e31347445de85d73b03ece7ce3c/
- Durucasu, H., İcan, Ö., Karamaşa, Ç., Yeşilaydın, G., ve Gülcan, B. (2015). Bulanık CPM Yöntemiyle Proje
Çizelgeleme: İnşaat Sektöründe Bir Uygulama. Ege Akademik Bakış, 15 (4), 449-466.
http://www.trdizin.gov.tr/publication/paper/detail/TVRrMU16SXhNUT09
- Elkalla, I., Elbeltagi, E., ve El Shikh, M. (2021). Solving fuzzy time–cost trade-off in construction projects using
linear programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267-278.
https://doi.org/10.1007/s40030-020-00489-7
- Habibi, F., Birgani, O., Koppelaar, H. ve Radenović, S. (2018). Using fuzzy logic to improve the project time and
cost estimation based on Project Evaluation and Review Technique (PERT). Journal of Project Management, 3(4),
183-196. https://doi.org/10.5267/j.jpm.2018.4.002
- Han, T. C., Chung, C. C., ve Liang, G. S. (2006). Application of fuzzy critical path method to airports cargo ground
operation systems. Journal of Marine Science and Technology, 14(3), 2. https://doi.org/10.51400/2709-6998.2067
- Herroelen, W. ve Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European
journal of operational research, 165(2), 289-306. https://doi.org/10.1016/j.ejor.2004.04.002
ISO 21502:2020 Project, Programme and Portfolio Management – Guidance On Project Management,
Switzerland: ISO, 2020.
- Jayagowri, P. ve Geetharamani, G. (2015). Using metric distance ranking method to find intuitionistic fuzzy
critical path. Journal of Applied Mathematics, 2015. https://doi.org/10.1155/2015/952150
Kenar, E. (2021). Klasik Pert ve Bulanık Pert Yöntemleri ile Proje Yönetimi ve Bir Mermer Fabrikası
Kurulumunda Uygulaması (Doktora Tezi).
- Lai, Y. J. ve Hwang, C. L. (1992). Fuzzy mathematical programming. In Fuzzy mathematical programming (pp.
74-186). Springer, Berlin, Heidelberg.
- Li, F. ve Wei, J. (2007, September). A fuzzy approach for the project management. In 2007 International
Conference on Wireless Communications, Networking and Mobile Computing (pp. 5180-5183). IEEE.
- Liang, T. F., Huang, T. S., ve Yang, M. F. (2012). Application of fuzzy mathematical programming to imprecise
project management decisions. Quality & Quantity, 46(5), 1451-1470. https://doi.org/10.1007/s11135-011-9460-
y
- Madhuri, K. U., Saradhi, B. P. ve Shankar, N. R. (2013). Fuzzy linear programming model for critical path
analysis. Int. J. Contemp. Math. Sciences, 8(2), 93-116. https://doi.org/10.12988/ijcms.2013.13010
- Mazlum, M., ve Güneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and
implementation on a business. Procedia-Social and Behavioral Sciences, 210, 348-357.
https://doi.org/10.1016/j.sbspro.2015.11.378
- Sadjadi, S. J., Pourmoayed, R. ve Aryanezhad, M. B. (2012). A robust critical path in an environment with hybrid
uncertainty. Applied Soft Computing, 12(3), 1087-1100. https://doi.org/10.1016/j.asoc.2011.11.015
- Saradhi, B. P., Ramesh, H., Shankar, N. R. ve Shaik, R. (2021). Hesitant Fuzzy Project Planning and Scheduling
using Critical path Technique. Turkish Journal of Computer and Mathematics Education, 12(6), 5272-5286.
https://www.proquest.com/scholarly-journals/hesitant-fuzzy-project-planning-schedulingusing/
docview/2640416443/se-2?accountid=15426
- Sethupathy.G., Judson L., ve Paul V.K. (2020). Time – Cost Optimization (TCO) By Application Of Fuzzy Logic
In Construction Projects. International Journal of Creative Research Thoughts, 8(6), 479-486.
https://doi.org/10.6084/m9.doi.one.IJCRT2006070
- Shankar, N. R., Sireesha, V. ve Rao, P. P. B. (2010). An analytical method for finding critical path in a fuzzy
project network. International Journal of contemporary mathematical sciences, 5(20), 953-962.
https://api.semanticscholar.org/CorpusID:14403952
- Sireesha, V., Rao, K. S., Shankar, N. R., ve Babu, S. S. (2012). Critical path analysis in the network with fuzzy
interval numbers as activity times. intervals, 16, 21. https://doi.org/10.1016/S0165-0114(00)00076-2
- Soysal, S., Dengiz, B., ve Atalay, K. (2021). Belirsizlik altında kaynak kısıtlı çok modlu çoklu proje çizelgeleme.
Journal of Turkish Operations Management, 5(1), 598-614.
- Subulan, K. (2020). Çok amaçlı kurumsal kaynak planlaması uyarlama projelerinin insan kaynağı kısıtı ve
belirsizlik altında çizelgelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1469-1486.
https://doi.org/10.17341/gazimmfd.519652
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers & operations research, 10(4), 291-298.
https://doi.org/10.1016/0305-0548(83)90004-7
A novel method with fuzzy linear programming in project scheduling: Application in software project
Yıl 2024,
Cilt: 8 Sayı: 1, 20 - 38, 18.07.2024
Vildan Çorumlu
,
Kumru Didem Atalay
,
Esra Dinler
Öz
Projects are the works in which the outputs are obtained by using the resources efficiently in a time with a certain start and end date. Achieving the project output quickly is important in order to gain competitive advantage in the market. For this reason, it is important to complete the project on time. At this stage, the issue of project scheduling comes to the fore. There are many methods used in project scheduling, such as the Critical Path Method and the Program Evaluation and Review Technique. Due to problems in estimating these parameters when activity times are uncertain, these methods may not be able to represent real projects accurately and fully. Fuzzy theory is a fundamental way to eliminate these problems and improve scheduling. The fuzzy theory brings the project scheduling models closer to reality by taking into account the uncertainties in the parameters, the situations caused by imprecise or incomplete information. In this study, a novel method based on fuzzy linear programming is proposed to determine the completion times of the project in case of uncertainty in the activity period of the project. In order to evaluate the proposed method, an application is carried out in a real software project. When the model results are examined, it has been observed that the project completion times shorten as the membership degrees decrease.
Kaynakça
- Ammar, M. A., ve Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International
Journal of Construction Management, 22(2), 252-261. https://doi.org/10.1080/15623599.2019.1619226
- Atlı Ö. ve Kahraman C. (2013). Bulanık Kritik Yol Analizi. Journal of Engineering and Natural Sciences
Mühendislik ve Fen Bilimleri Dergisi, Sigma (31), 128-140.
- Başar, A. (2022). Yeni bir matematiksel model ve hibrit meta sezgisel ile kaynak kısıtlı projelerin çizelgelenmesi:
Bir vaka çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1169-1184.
https://doi.org/10.17341/gazimmfd.913666
- Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., ve Yates, J. K. (2009). Construction project scheduling
with time, cost, and material restrictions using fuzzy mathematical models and critical path method. Journal of
Construction Engineering and Management, 135(10), 1096-1104. https://doi.org/10.1061/(ASCE)0733-
9364(2009)135:10(109)
- Chanas, S. ve Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and
systems, 122(2), 195-204. https://doi.org/10.1016/S0165-0114(00)00076-2
- Chen, S. P., ve Hsueh, Y. J. (2008). A simple approach to fuzzy critical path analysis in project networks. Applied
Mathematical Modelling, 32(7), 1289-1297. https://doi.org/10.1016/j.apm.2007.04.009
- Chwastyk, A. ve Pisz, I. (2020). Critical path analysis with imprecise activities times. Sustainable Economic
Development and Application of Innovation Management, 2004-2013.
https://repo.uni.opole.pl/info/article/UO6a9b4e31347445de85d73b03ece7ce3c/
- Durucasu, H., İcan, Ö., Karamaşa, Ç., Yeşilaydın, G., ve Gülcan, B. (2015). Bulanık CPM Yöntemiyle Proje
Çizelgeleme: İnşaat Sektöründe Bir Uygulama. Ege Akademik Bakış, 15 (4), 449-466.
http://www.trdizin.gov.tr/publication/paper/detail/TVRrMU16SXhNUT09
- Elkalla, I., Elbeltagi, E., ve El Shikh, M. (2021). Solving fuzzy time–cost trade-off in construction projects using
linear programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267-278.
https://doi.org/10.1007/s40030-020-00489-7
- Habibi, F., Birgani, O., Koppelaar, H. ve Radenović, S. (2018). Using fuzzy logic to improve the project time and
cost estimation based on Project Evaluation and Review Technique (PERT). Journal of Project Management, 3(4),
183-196. https://doi.org/10.5267/j.jpm.2018.4.002
- Han, T. C., Chung, C. C., ve Liang, G. S. (2006). Application of fuzzy critical path method to airports cargo ground
operation systems. Journal of Marine Science and Technology, 14(3), 2. https://doi.org/10.51400/2709-6998.2067
- Herroelen, W. ve Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European
journal of operational research, 165(2), 289-306. https://doi.org/10.1016/j.ejor.2004.04.002
ISO 21502:2020 Project, Programme and Portfolio Management – Guidance On Project Management,
Switzerland: ISO, 2020.
- Jayagowri, P. ve Geetharamani, G. (2015). Using metric distance ranking method to find intuitionistic fuzzy
critical path. Journal of Applied Mathematics, 2015. https://doi.org/10.1155/2015/952150
Kenar, E. (2021). Klasik Pert ve Bulanık Pert Yöntemleri ile Proje Yönetimi ve Bir Mermer Fabrikası
Kurulumunda Uygulaması (Doktora Tezi).
- Lai, Y. J. ve Hwang, C. L. (1992). Fuzzy mathematical programming. In Fuzzy mathematical programming (pp.
74-186). Springer, Berlin, Heidelberg.
- Li, F. ve Wei, J. (2007, September). A fuzzy approach for the project management. In 2007 International
Conference on Wireless Communications, Networking and Mobile Computing (pp. 5180-5183). IEEE.
- Liang, T. F., Huang, T. S., ve Yang, M. F. (2012). Application of fuzzy mathematical programming to imprecise
project management decisions. Quality & Quantity, 46(5), 1451-1470. https://doi.org/10.1007/s11135-011-9460-
y
- Madhuri, K. U., Saradhi, B. P. ve Shankar, N. R. (2013). Fuzzy linear programming model for critical path
analysis. Int. J. Contemp. Math. Sciences, 8(2), 93-116. https://doi.org/10.12988/ijcms.2013.13010
- Mazlum, M., ve Güneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and
implementation on a business. Procedia-Social and Behavioral Sciences, 210, 348-357.
https://doi.org/10.1016/j.sbspro.2015.11.378
- Sadjadi, S. J., Pourmoayed, R. ve Aryanezhad, M. B. (2012). A robust critical path in an environment with hybrid
uncertainty. Applied Soft Computing, 12(3), 1087-1100. https://doi.org/10.1016/j.asoc.2011.11.015
- Saradhi, B. P., Ramesh, H., Shankar, N. R. ve Shaik, R. (2021). Hesitant Fuzzy Project Planning and Scheduling
using Critical path Technique. Turkish Journal of Computer and Mathematics Education, 12(6), 5272-5286.
https://www.proquest.com/scholarly-journals/hesitant-fuzzy-project-planning-schedulingusing/
docview/2640416443/se-2?accountid=15426
- Sethupathy.G., Judson L., ve Paul V.K. (2020). Time – Cost Optimization (TCO) By Application Of Fuzzy Logic
In Construction Projects. International Journal of Creative Research Thoughts, 8(6), 479-486.
https://doi.org/10.6084/m9.doi.one.IJCRT2006070
- Shankar, N. R., Sireesha, V. ve Rao, P. P. B. (2010). An analytical method for finding critical path in a fuzzy
project network. International Journal of contemporary mathematical sciences, 5(20), 953-962.
https://api.semanticscholar.org/CorpusID:14403952
- Sireesha, V., Rao, K. S., Shankar, N. R., ve Babu, S. S. (2012). Critical path analysis in the network with fuzzy
interval numbers as activity times. intervals, 16, 21. https://doi.org/10.1016/S0165-0114(00)00076-2
- Soysal, S., Dengiz, B., ve Atalay, K. (2021). Belirsizlik altında kaynak kısıtlı çok modlu çoklu proje çizelgeleme.
Journal of Turkish Operations Management, 5(1), 598-614.
- Subulan, K. (2020). Çok amaçlı kurumsal kaynak planlaması uyarlama projelerinin insan kaynağı kısıtı ve
belirsizlik altında çizelgelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1469-1486.
https://doi.org/10.17341/gazimmfd.519652
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers & operations research, 10(4), 291-298.
https://doi.org/10.1016/0305-0548(83)90004-7
Yıl 2024,
Cilt: 8 Sayı: 1, 20 - 38, 18.07.2024
Vildan Çorumlu
,
Kumru Didem Atalay
,
Esra Dinler
Kaynakça
- Ammar, M. A., ve Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International
Journal of Construction Management, 22(2), 252-261. https://doi.org/10.1080/15623599.2019.1619226
- Atlı Ö. ve Kahraman C. (2013). Bulanık Kritik Yol Analizi. Journal of Engineering and Natural Sciences
Mühendislik ve Fen Bilimleri Dergisi, Sigma (31), 128-140.
- Başar, A. (2022). Yeni bir matematiksel model ve hibrit meta sezgisel ile kaynak kısıtlı projelerin çizelgelenmesi:
Bir vaka çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1169-1184.
https://doi.org/10.17341/gazimmfd.913666
- Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., ve Yates, J. K. (2009). Construction project scheduling
with time, cost, and material restrictions using fuzzy mathematical models and critical path method. Journal of
Construction Engineering and Management, 135(10), 1096-1104. https://doi.org/10.1061/(ASCE)0733-
9364(2009)135:10(109)
- Chanas, S. ve Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and
systems, 122(2), 195-204. https://doi.org/10.1016/S0165-0114(00)00076-2
- Chen, S. P., ve Hsueh, Y. J. (2008). A simple approach to fuzzy critical path analysis in project networks. Applied
Mathematical Modelling, 32(7), 1289-1297. https://doi.org/10.1016/j.apm.2007.04.009
- Chwastyk, A. ve Pisz, I. (2020). Critical path analysis with imprecise activities times. Sustainable Economic
Development and Application of Innovation Management, 2004-2013.
https://repo.uni.opole.pl/info/article/UO6a9b4e31347445de85d73b03ece7ce3c/
- Durucasu, H., İcan, Ö., Karamaşa, Ç., Yeşilaydın, G., ve Gülcan, B. (2015). Bulanık CPM Yöntemiyle Proje
Çizelgeleme: İnşaat Sektöründe Bir Uygulama. Ege Akademik Bakış, 15 (4), 449-466.
http://www.trdizin.gov.tr/publication/paper/detail/TVRrMU16SXhNUT09
- Elkalla, I., Elbeltagi, E., ve El Shikh, M. (2021). Solving fuzzy time–cost trade-off in construction projects using
linear programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267-278.
https://doi.org/10.1007/s40030-020-00489-7
- Habibi, F., Birgani, O., Koppelaar, H. ve Radenović, S. (2018). Using fuzzy logic to improve the project time and
cost estimation based on Project Evaluation and Review Technique (PERT). Journal of Project Management, 3(4),
183-196. https://doi.org/10.5267/j.jpm.2018.4.002
- Han, T. C., Chung, C. C., ve Liang, G. S. (2006). Application of fuzzy critical path method to airports cargo ground
operation systems. Journal of Marine Science and Technology, 14(3), 2. https://doi.org/10.51400/2709-6998.2067
- Herroelen, W. ve Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European
journal of operational research, 165(2), 289-306. https://doi.org/10.1016/j.ejor.2004.04.002
ISO 21502:2020 Project, Programme and Portfolio Management – Guidance On Project Management,
Switzerland: ISO, 2020.
- Jayagowri, P. ve Geetharamani, G. (2015). Using metric distance ranking method to find intuitionistic fuzzy
critical path. Journal of Applied Mathematics, 2015. https://doi.org/10.1155/2015/952150
Kenar, E. (2021). Klasik Pert ve Bulanık Pert Yöntemleri ile Proje Yönetimi ve Bir Mermer Fabrikası
Kurulumunda Uygulaması (Doktora Tezi).
- Lai, Y. J. ve Hwang, C. L. (1992). Fuzzy mathematical programming. In Fuzzy mathematical programming (pp.
74-186). Springer, Berlin, Heidelberg.
- Li, F. ve Wei, J. (2007, September). A fuzzy approach for the project management. In 2007 International
Conference on Wireless Communications, Networking and Mobile Computing (pp. 5180-5183). IEEE.
- Liang, T. F., Huang, T. S., ve Yang, M. F. (2012). Application of fuzzy mathematical programming to imprecise
project management decisions. Quality & Quantity, 46(5), 1451-1470. https://doi.org/10.1007/s11135-011-9460-
y
- Madhuri, K. U., Saradhi, B. P. ve Shankar, N. R. (2013). Fuzzy linear programming model for critical path
analysis. Int. J. Contemp. Math. Sciences, 8(2), 93-116. https://doi.org/10.12988/ijcms.2013.13010
- Mazlum, M., ve Güneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and
implementation on a business. Procedia-Social and Behavioral Sciences, 210, 348-357.
https://doi.org/10.1016/j.sbspro.2015.11.378
- Sadjadi, S. J., Pourmoayed, R. ve Aryanezhad, M. B. (2012). A robust critical path in an environment with hybrid
uncertainty. Applied Soft Computing, 12(3), 1087-1100. https://doi.org/10.1016/j.asoc.2011.11.015
- Saradhi, B. P., Ramesh, H., Shankar, N. R. ve Shaik, R. (2021). Hesitant Fuzzy Project Planning and Scheduling
using Critical path Technique. Turkish Journal of Computer and Mathematics Education, 12(6), 5272-5286.
https://www.proquest.com/scholarly-journals/hesitant-fuzzy-project-planning-schedulingusing/
docview/2640416443/se-2?accountid=15426
- Sethupathy.G., Judson L., ve Paul V.K. (2020). Time – Cost Optimization (TCO) By Application Of Fuzzy Logic
In Construction Projects. International Journal of Creative Research Thoughts, 8(6), 479-486.
https://doi.org/10.6084/m9.doi.one.IJCRT2006070
- Shankar, N. R., Sireesha, V. ve Rao, P. P. B. (2010). An analytical method for finding critical path in a fuzzy
project network. International Journal of contemporary mathematical sciences, 5(20), 953-962.
https://api.semanticscholar.org/CorpusID:14403952
- Sireesha, V., Rao, K. S., Shankar, N. R., ve Babu, S. S. (2012). Critical path analysis in the network with fuzzy
interval numbers as activity times. intervals, 16, 21. https://doi.org/10.1016/S0165-0114(00)00076-2
- Soysal, S., Dengiz, B., ve Atalay, K. (2021). Belirsizlik altında kaynak kısıtlı çok modlu çoklu proje çizelgeleme.
Journal of Turkish Operations Management, 5(1), 598-614.
- Subulan, K. (2020). Çok amaçlı kurumsal kaynak planlaması uyarlama projelerinin insan kaynağı kısıtı ve
belirsizlik altında çizelgelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1469-1486.
https://doi.org/10.17341/gazimmfd.519652
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers & operations research, 10(4), 291-298.
https://doi.org/10.1016/0305-0548(83)90004-7