Araştırma Makalesi
BibTex RIS Kaynak Göster

VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS

Yıl 2022, , 43 - 50, 01.03.2022
https://doi.org/10.33773/jum.1021095

Öz

The aim of the article is the presentation of certain extensions of the famous
Fuglede-Putnam Theorem on the class of $p$-$w$-hyponormal operators, which generalize some results
proved by authors in \cite{Prasad}.

Destekleyen Kurum

Laboratory of Mathematics and Application - DGRSDT in Algeria.

Teşekkür

My thanks and gratitude for the editors and reviewers. Regards. Bakir.

Kaynakça

  • \bibitem{Aluthge1} A. Aluthge, On $p$-hyponormal operators for $0<p<1$, Integ. Equa. Oper. Theo. Vol.13, pp.307-315, (1990).
  • \bibitem{Aluthge2} A. Aluthge and D. Wang, $w$-hyponormal operators, Integ. Equa. Oper. Theo., Vol.36, No.1, pp.1-10, (2000).
  • \bibitem{Aluthge3} A. Aluthge, Some generalized theorems on $p$-hyponormal operators, Integ. Equa. Oper. Theo., Vol.24, pp.497-501, (1996).
  • \bibitem{Cho} M. Cho, T. Huruya and Y.O. Kim, A note on $w$-% hyponormal operators, J. Ineq. Appl., Vol.17, No.1, pp.1-10, (2002).
  • \bibitem{Kim} I.H. Kim, The Fuglede-Putnam theorem for $(p,k)$% -quasihyponormal operators, J. Ineq. and Appl., ID 47481, pp.1-7, (2006).
  • \bibitem{Mecheri} S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede- Putnam theorem for $p$-hyponormal or class $\mathcal{Y}$ operators, Bull. Korean Math. Soc., Vol.43, No.4, 747-753, (2006).
  • \bibitem{Nasli} A. Nasli Bakir and S. Mecheri, Another version of Fuglede-Putnam Theorem, Georg. Math. J., Vol.16, No.3, pp.427-433, (2009).
  • \bibitem{Otieno1} M.O. Otieno, On intertwining $w$% -hyponormal operators, Opuscula Mathematica, Vol.25, No.2, pp.275-285, (2005).
  • \bibitem{Otieno2} M.O. Otieno, On quasisimilarity and $w$-hyponormal operators, Opuscula Mathematica, Vol.27, No.1, pp.73-81, (2007).
  • \bibitem{Prasad} T. Prasad and A. Bachir, Putnam theorem for $p$-$w$-hyponorma or class $\mathcal{Y}$ operators, Int. J. Open Problems Compt. Math., Vol.11, No.1, pp.17-24, (2018).
  • \bibitem{Stampfli} J.G. Stampfli and B.L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J., Vol.25, pp.359-365, (1976).
  • \bibitem{Tadahashi} K. Tadahashi, A note on $p$-hyponormal operators, Proc. Amer. Math. Soc., Vol.125, pp.221-230, (1997).
  • \bibitem{Takahashi} K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged), Vol.43, pp.123-125, (1981).
  • \bibitem{Tanahashi1} K. Tanahashi, On $\log $-hyponormal operators, Integ. Equa. Oper. Theo., Vol.34, pp.364-372, (1999).
  • \bibitem{Uchiyama} A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for $p$-hyponormal or $\log $-hyponormal operators% , Glasg. Math. J., Vol.44, pp.397-410, (2002).
  • \bibitem{Yang}C.S. Yang and H. Li, Properties of $p$-$w$-hyponormal operators, Appl. Math. J. Chinese Univ. Ser. B, Vol.21, No.1, pp.64-68, (2006).
  • \bibitem{Yoshino} T. Yoshino, Remark on the generalisation of Putnam-Fuglede theorem, Proc. Amer. Math. Soc., Vol.95, pp.571-572, (1985).
Yıl 2022, , 43 - 50, 01.03.2022
https://doi.org/10.33773/jum.1021095

Öz

Kaynakça

  • \bibitem{Aluthge1} A. Aluthge, On $p$-hyponormal operators for $0<p<1$, Integ. Equa. Oper. Theo. Vol.13, pp.307-315, (1990).
  • \bibitem{Aluthge2} A. Aluthge and D. Wang, $w$-hyponormal operators, Integ. Equa. Oper. Theo., Vol.36, No.1, pp.1-10, (2000).
  • \bibitem{Aluthge3} A. Aluthge, Some generalized theorems on $p$-hyponormal operators, Integ. Equa. Oper. Theo., Vol.24, pp.497-501, (1996).
  • \bibitem{Cho} M. Cho, T. Huruya and Y.O. Kim, A note on $w$-% hyponormal operators, J. Ineq. Appl., Vol.17, No.1, pp.1-10, (2002).
  • \bibitem{Kim} I.H. Kim, The Fuglede-Putnam theorem for $(p,k)$% -quasihyponormal operators, J. Ineq. and Appl., ID 47481, pp.1-7, (2006).
  • \bibitem{Mecheri} S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede- Putnam theorem for $p$-hyponormal or class $\mathcal{Y}$ operators, Bull. Korean Math. Soc., Vol.43, No.4, 747-753, (2006).
  • \bibitem{Nasli} A. Nasli Bakir and S. Mecheri, Another version of Fuglede-Putnam Theorem, Georg. Math. J., Vol.16, No.3, pp.427-433, (2009).
  • \bibitem{Otieno1} M.O. Otieno, On intertwining $w$% -hyponormal operators, Opuscula Mathematica, Vol.25, No.2, pp.275-285, (2005).
  • \bibitem{Otieno2} M.O. Otieno, On quasisimilarity and $w$-hyponormal operators, Opuscula Mathematica, Vol.27, No.1, pp.73-81, (2007).
  • \bibitem{Prasad} T. Prasad and A. Bachir, Putnam theorem for $p$-$w$-hyponorma or class $\mathcal{Y}$ operators, Int. J. Open Problems Compt. Math., Vol.11, No.1, pp.17-24, (2018).
  • \bibitem{Stampfli} J.G. Stampfli and B.L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J., Vol.25, pp.359-365, (1976).
  • \bibitem{Tadahashi} K. Tadahashi, A note on $p$-hyponormal operators, Proc. Amer. Math. Soc., Vol.125, pp.221-230, (1997).
  • \bibitem{Takahashi} K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged), Vol.43, pp.123-125, (1981).
  • \bibitem{Tanahashi1} K. Tanahashi, On $\log $-hyponormal operators, Integ. Equa. Oper. Theo., Vol.34, pp.364-372, (1999).
  • \bibitem{Uchiyama} A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for $p$-hyponormal or $\log $-hyponormal operators% , Glasg. Math. J., Vol.44, pp.397-410, (2002).
  • \bibitem{Yang}C.S. Yang and H. Li, Properties of $p$-$w$-hyponormal operators, Appl. Math. J. Chinese Univ. Ser. B, Vol.21, No.1, pp.64-68, (2006).
  • \bibitem{Yoshino} T. Yoshino, Remark on the generalisation of Putnam-Fuglede theorem, Proc. Amer. Math. Soc., Vol.95, pp.571-572, (1985).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Aissa Naslı Bakır 0000-0001-6906-3307

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 9 Kasım 2021
Kabul Tarihi 1 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Naslı Bakır, A. (2022). VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS. Journal of Universal Mathematics, 5(1), 43-50. https://doi.org/10.33773/jum.1021095
AMA Naslı Bakır A. VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS. JUM. Mart 2022;5(1):43-50. doi:10.33773/jum.1021095
Chicago Naslı Bakır, Aissa. “VERSIONS OF FUGLEDE-PUTNAM THEOREM ON P-W-HYPONORMAL OPERATORS”. Journal of Universal Mathematics 5, sy. 1 (Mart 2022): 43-50. https://doi.org/10.33773/jum.1021095.
EndNote Naslı Bakır A (01 Mart 2022) VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS. Journal of Universal Mathematics 5 1 43–50.
IEEE A. Naslı Bakır, “VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS”, JUM, c. 5, sy. 1, ss. 43–50, 2022, doi: 10.33773/jum.1021095.
ISNAD Naslı Bakır, Aissa. “VERSIONS OF FUGLEDE-PUTNAM THEOREM ON P-W-HYPONORMAL OPERATORS”. Journal of Universal Mathematics 5/1 (Mart 2022), 43-50. https://doi.org/10.33773/jum.1021095.
JAMA Naslı Bakır A. VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS. JUM. 2022;5:43–50.
MLA Naslı Bakır, Aissa. “VERSIONS OF FUGLEDE-PUTNAM THEOREM ON P-W-HYPONORMAL OPERATORS”. Journal of Universal Mathematics, c. 5, sy. 1, 2022, ss. 43-50, doi:10.33773/jum.1021095.
Vancouver Naslı Bakır A. VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS. JUM. 2022;5(1):43-50.