Araştırma Makalesi
BibTex RIS Kaynak Göster

ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS

Yıl 2022, , 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Öz

Let $K$ be a field of characteristic zero, $X_n=\{x_1,\dots,x_n\}$ be a set of variables, $K[X_n]$ be the polynomial algebra and $F_n$ be the free metabelian Lie algebra of rank $n$ generated by $X_n$ over the base field $K$. Well known result of Weitzenb\"ock states that $K[X_n]^\delta=\big \{u\in K[X_n] \big\vert\ \delta(u)=0\big \}$ is finitely generated as an algebra, where $\delta$ is a locally nilpotent linear derivation of $K[X_n]$. Extending this ideal to the non commutative algebras, recently the algebra $F_n^\delta$ of constants in the free metabelian Lie algebras have been investigated. According to the findings, $F_n^\delta$ is not finitely generated as a Lie algebra; whereas, $F_n^\delta \cap F_n^\prime$ is finitely generated $K[X_n]^\delta$-module and a list of generators for $n\le 4$ was given. In this work, in filling the gap in the list of small $n'$s we work in $F_5$ and give a list of generators of $F_5^\delta$ where $\delta(x_5)=x_4$, $\delta(x_4)=0$, $\delta(x_3)=x_2$, $\delta(x_2)=x_1$ and $\delta(x_1)=0$.

Kaynakça

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
Yıl 2022, , 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Öz

Kaynakça

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Andre Dushımırımana 0000-0002-7486-2557

Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 14 Temmuz 2022
Kabul Tarihi 23 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Dushımırımana, A. (2022). ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics, 5(2), 185-192. https://doi.org/10.33773/jum.1143787
AMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. Temmuz 2022;5(2):185-192. doi:10.33773/jum.1143787
Chicago Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5, sy. 2 (Temmuz 2022): 185-92. https://doi.org/10.33773/jum.1143787.
EndNote Dushımırımana A (01 Temmuz 2022) ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics 5 2 185–192.
IEEE A. Dushımırımana, “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”, JUM, c. 5, sy. 2, ss. 185–192, 2022, doi: 10.33773/jum.1143787.
ISNAD Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5/2 (Temmuz 2022), 185-192. https://doi.org/10.33773/jum.1143787.
JAMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5:185–192.
MLA Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics, c. 5, sy. 2, 2022, ss. 185-92, doi:10.33773/jum.1143787.
Vancouver Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5(2):185-92.