Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 239 - 253, 31.07.2023
https://doi.org/10.33773/jum.1195108

Öz

Kaynakça

  • E. Bishop, Foundations of Constructive Analysis, New York: McGraw-Hill, (1967).
  • D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, (1987). A. Cherubini and A. Frigeri, Inverse semigroups with apartness, Semigroup Forum, 98(3), 571--588 (2019).
  • R. Chinram and K. Tinpun, Isomorphism theorems for $\Gamma$-semigroups and ordered $\Gamma$-semigroups, Thai Journal of Mathematics, 7(2), 231-–241 (2009).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Semigroups with apartness, Math. Logic Quarterly, 59(6), 407--414 (2013).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Basic notions of (Constructive) semigroups with apartness, Semigroup Forum, 92(3), 659--674 (2016).
  • H. Hedayati, Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals, Thai J. Math., 11(3), 563--575 (2013).
  • N. Kehayopulu, On ordered $\Gamma$-semigroups. Sci. Math. Japonicae Online, e-2010, 37-–43 (2013).
  • Y. I. Kwon amd S. K. Li, Some special elements in ordered $\Gamma$-semigroups, Kyungpook Math. J., 35(3), 679--685 (1996).
  • R. Mines, F. Richman and W. Ruitenburg, A course of constructive algebra, Springer-Verlag, New York (1988).
  • D. A. Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset, Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, {13}, 7--25 (2002).
  • D. A. Romano, A note on quasi-antiorder in semigroup, Novi Sad J. Math., 37(1), 3--8 (2007).
  • D. A. Romano, An isomorphism theorem for anti-ordered sets, Filomat, 22(1), 145--160 (2008).
  • D. A. Romano, On quasi-antiorder relation on semigroups, Mat. Vesn., 64(3), 190--199 (2012).
  • D. A. Romano, $\Gamma$-semigroups with apartness, Bull. Allahabad Math. Soc., 34(1), 71--83 (2019).
  • D. A. Romano, Some algebraic structures with apartness, A review, J. Int. Math. Virtual Inst., 9(2), 361--395 (2019).
  • D. A. Romano, Semilattice co-congruence in $\Gamma$-semigroups, Turkish Journal of Mathematics and Computer Science, 12(1), 1--7 (2020).
  • D. A. Romano, Co-filters in $\Gamma$-semigroups ordered under co-order, An. \c{S}tiin\c{t}. Univ. Al. I. Cuza Ia\c{s}i, Ser. Nou\u{a}, Mat., 67(1), 11--18 (2021).
  • D. A. Romano. On co-filters in semigroup with apartness. \emph{Kragujevac J. Math.}, \textbf{45}(4)(2021), 607-–613.
  • M. K Sen, On $\Gamma$-semigroups. In Proceeding of International Conference on 'Algebra and its Applications, (New Delhi, 1981)', (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, (1984).
  • M. K. Sen and N. K. Saha, On $\Gamma$-semigroup, I. Bull. Calcutta Math. Soc., 78, 181--186 (1986).
  • A. Seth, $\Gamma$-group congruence on regular $\Gamma$-semigroups, Inter. J. Math. Math. Sci., 15(1), 103--106 (1992).
  • M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups, Thai J. Math., 4(2), 403--415 (2006).
  • A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, (1988).

THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS

Yıl 2023, , 239 - 253, 31.07.2023
https://doi.org/10.33773/jum.1195108

Öz

The notion of $\Gamma$-semigroups has been introduced by Sen and Saha in 1986. This author introduced the concept of $\Gamma$-semigroups with apartness and analyzed
their properties within the Bishop's constructive orientation. Many classical notions and processes of semigroups and $\Gamma$-semigroups have been extended to $\Gamma$-semigroups with apartness. Co-ordered $\Gamma$-semigroups with apartness have been studied by the author also. In this paper, as a continuation of previous research, the author investigates the specificity of two forms of the first isomorphism theorem for (co-ordered) $\Gamma$-semigroups with apartness which one of them has no a counterpart in the Classical case. In addition,
specific techniques used in proofs within algebraic Bishop's constructive orientation are exposed.

Kaynakça

  • E. Bishop, Foundations of Constructive Analysis, New York: McGraw-Hill, (1967).
  • D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, (1987). A. Cherubini and A. Frigeri, Inverse semigroups with apartness, Semigroup Forum, 98(3), 571--588 (2019).
  • R. Chinram and K. Tinpun, Isomorphism theorems for $\Gamma$-semigroups and ordered $\Gamma$-semigroups, Thai Journal of Mathematics, 7(2), 231-–241 (2009).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Semigroups with apartness, Math. Logic Quarterly, 59(6), 407--414 (2013).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Basic notions of (Constructive) semigroups with apartness, Semigroup Forum, 92(3), 659--674 (2016).
  • H. Hedayati, Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals, Thai J. Math., 11(3), 563--575 (2013).
  • N. Kehayopulu, On ordered $\Gamma$-semigroups. Sci. Math. Japonicae Online, e-2010, 37-–43 (2013).
  • Y. I. Kwon amd S. K. Li, Some special elements in ordered $\Gamma$-semigroups, Kyungpook Math. J., 35(3), 679--685 (1996).
  • R. Mines, F. Richman and W. Ruitenburg, A course of constructive algebra, Springer-Verlag, New York (1988).
  • D. A. Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset, Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, {13}, 7--25 (2002).
  • D. A. Romano, A note on quasi-antiorder in semigroup, Novi Sad J. Math., 37(1), 3--8 (2007).
  • D. A. Romano, An isomorphism theorem for anti-ordered sets, Filomat, 22(1), 145--160 (2008).
  • D. A. Romano, On quasi-antiorder relation on semigroups, Mat. Vesn., 64(3), 190--199 (2012).
  • D. A. Romano, $\Gamma$-semigroups with apartness, Bull. Allahabad Math. Soc., 34(1), 71--83 (2019).
  • D. A. Romano, Some algebraic structures with apartness, A review, J. Int. Math. Virtual Inst., 9(2), 361--395 (2019).
  • D. A. Romano, Semilattice co-congruence in $\Gamma$-semigroups, Turkish Journal of Mathematics and Computer Science, 12(1), 1--7 (2020).
  • D. A. Romano, Co-filters in $\Gamma$-semigroups ordered under co-order, An. \c{S}tiin\c{t}. Univ. Al. I. Cuza Ia\c{s}i, Ser. Nou\u{a}, Mat., 67(1), 11--18 (2021).
  • D. A. Romano. On co-filters in semigroup with apartness. \emph{Kragujevac J. Math.}, \textbf{45}(4)(2021), 607-–613.
  • M. K Sen, On $\Gamma$-semigroups. In Proceeding of International Conference on 'Algebra and its Applications, (New Delhi, 1981)', (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, (1984).
  • M. K. Sen and N. K. Saha, On $\Gamma$-semigroup, I. Bull. Calcutta Math. Soc., 78, 181--186 (1986).
  • A. Seth, $\Gamma$-group congruence on regular $\Gamma$-semigroups, Inter. J. Math. Math. Sci., 15(1), 103--106 (1992).
  • M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups, Thai J. Math., 4(2), 403--415 (2006).
  • A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, (1988).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Daniel A. Romano 0000-0003-1148-3258

Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 26 Ekim 2022
Kabul Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Romano, D. A. (2023). THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. Journal of Universal Mathematics, 6(2), 239-253. https://doi.org/10.33773/jum.1195108
AMA Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. Temmuz 2023;6(2):239-253. doi:10.33773/jum.1195108
Chicago Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics 6, sy. 2 (Temmuz 2023): 239-53. https://doi.org/10.33773/jum.1195108.
EndNote Romano DA (01 Temmuz 2023) THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. Journal of Universal Mathematics 6 2 239–253.
IEEE D. A. Romano, “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”, JUM, c. 6, sy. 2, ss. 239–253, 2023, doi: 10.33773/jum.1195108.
ISNAD Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics 6/2 (Temmuz 2023), 239-253. https://doi.org/10.33773/jum.1195108.
JAMA Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. 2023;6:239–253.
MLA Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics, c. 6, sy. 2, 2023, ss. 239-53, doi:10.33773/jum.1195108.
Vancouver Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. 2023;6(2):239-53.