Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 58 - 61, 15.10.2023
https://doi.org/10.33773/jum.1372208

Öz

Kaynakça

  • Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, 1985. Translation: VNU Science Press, Utrecht, (1987).
  • V. Drensky, Free Algebras and PI-Algebras, Springer, Singapore, (1999).
  • V. Drensky, S_. F_nd_k, Inner and outer automorphisms of free metabelian nilpotent Lie algebras. Communications in Algebra, Vol.40, No.12, pp.4389-4403 (2012).
  • E. Aydin, Pointwise inner automoprphisms of relatively free Lie algebras, Journal of Universal Mathematics, Vol.5, No.2, pp.76-80 (2022).
  • E. Aydin, On the Group of Pointwise Inner Automoprphisms, Journal of Universal Mathematics, Vol.6, No.2, pp.221-226 (2023).
  • Ş Findik, Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Mathematical Journal, Vol.35, No.2, pp.171-210 (2010).

ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR

Yıl 2023, , 58 - 61, 15.10.2023
https://doi.org/10.33773/jum.1372208

Öz

Let $L_{m,c}$ stand for the free metabelian nilpotent Lie algebra of class $c$ of rank $m$ over a field $K$ of characteristic zero.
Automorphisms of the form $\varphi(x_i)=e^{adu_i}(x_i)$ are called pointwise inner, where $e^{adu_i}$, is the inner automorphism
induced by the element $u_i\in L_{m,c}$ for each $i=1,\ldots,m$. In the present study, we investigate the group structure of
the group $\text{\rm PInn}(L_{m,4})$ of pointwise inner automorphisms of $L_{m,4}$ for nilpotency class four.

Kaynakça

  • Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, 1985. Translation: VNU Science Press, Utrecht, (1987).
  • V. Drensky, Free Algebras and PI-Algebras, Springer, Singapore, (1999).
  • V. Drensky, S_. F_nd_k, Inner and outer automorphisms of free metabelian nilpotent Lie algebras. Communications in Algebra, Vol.40, No.12, pp.4389-4403 (2012).
  • E. Aydin, Pointwise inner automoprphisms of relatively free Lie algebras, Journal of Universal Mathematics, Vol.5, No.2, pp.76-80 (2022).
  • E. Aydin, On the Group of Pointwise Inner Automoprphisms, Journal of Universal Mathematics, Vol.6, No.2, pp.221-226 (2023).
  • Ş Findik, Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Mathematical Journal, Vol.35, No.2, pp.171-210 (2010).
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Ela Aydın 0000-0003-4867-0583

Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 6 Ekim 2023
Kabul Tarihi 14 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aydın, E. (2023). ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR. Journal of Universal Mathematics, 6(3-Supplement), 58-61. https://doi.org/10.33773/jum.1372208
AMA Aydın E. ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR. JUM. Ekim 2023;6(3-Supplement):58-61. doi:10.33773/jum.1372208
Chicago Aydın, Ela. “ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR”. Journal of Universal Mathematics 6, sy. 3-Supplement (Ekim 2023): 58-61. https://doi.org/10.33773/jum.1372208.
EndNote Aydın E (01 Ekim 2023) ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR. Journal of Universal Mathematics 6 3-Supplement 58–61.
IEEE E. Aydın, “ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR”, JUM, c. 6, sy. 3-Supplement, ss. 58–61, 2023, doi: 10.33773/jum.1372208.
ISNAD Aydın, Ela. “ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR”. Journal of Universal Mathematics 6/3-Supplement (Ekim 2023), 58-61. https://doi.org/10.33773/jum.1372208.
JAMA Aydın E. ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR. JUM. 2023;6:58–61.
MLA Aydın, Ela. “ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR”. Journal of Universal Mathematics, c. 6, sy. 3-Supplement, 2023, ss. 58-61, doi:10.33773/jum.1372208.
Vancouver Aydın E. ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR. JUM. 2023;6(3-Supplement):58-61.