An ideal $I$ is a family of positive integers $\mathbb{N}$ which is closed under taking finite unions and subsets of its elements. In this paper, we introduce the notions of ideal versions of weighted lacunary statistical $\tau$-convergence, statistical $\tau$-Cauchy, weighted lacunary $\tau$-boundedness of sequences in locally solid Riesz spaces endowed with the topology $\tau$. We also prove some topological results related to these concepts in locally solid Riesz space.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 30 Ocak 2019 |
Gönderilme Tarihi | 5 Aralık 2018 |
Kabul Tarihi | 16 Ocak 2019 |
Yayımlandığı Sayı | Yıl 2019 |