Araştırma Makalesi
BibTex RIS Kaynak Göster

TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG'S SENSE

Yıl 2019, , 144 - 153, 29.07.2019
https://doi.org/10.33773/jum.522688

Öz

Abstract. In this paper, the concepts of temporal and overall intuitionistic
fuzzy topology in Chang sense is introduced and investigated some properties
of these concepts. Furthermore, we give fundamental denitions related to
this topology as temporal and overall aspects. We also examine the relation-
ship between this topology and the temporal and overall intuitionistic fuzzy
topology in Sostak's sense.

Kaynakça

  • A.Sostak, On a fuzzy topological structure. Rend Circ. Mat. Palermo Supp., Vol. 11,pp. 89-103(1985).
  • C. L. Chang, Fuzzy topological spaces. J. Math Ana. Appl.,Vol. 24, 182{190.(1968)
  • D. Çoker and M. Demirci , An introduction to intuitionistic topological spaces in Sostak's sense. BUSEFAL, Vol. 67,pp. 67{76 (1996)
  • D. Çoker, An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systemsVol. 88, N. 1, pp. 81-89 (1997)
  • F.Kutlu, O. Atan and T. Bilgin, Distance measure, similarity measure, entropy and inclusionmeasure for temporal intuitionistic fuzzy sets. In: Proceedings of IFSCOM'2016, Mersin/Turkey,pp.130{148 (2016)
  • F. Kutlu ,T. Bilgin , Temporal intuitionistic fuzzy topology in Sostak's sense. Notes on Intu-itionistic Fuzzy Sets, Vol. 21 N.2, pp. 63{70, (2015)
  • F.Kutlu , A. A. Ramadan ,T. Bilgin, On compactness in temporal intuitionistic fuzzy Sostaktopology, Notes on Intuitionistic Fuzzy Sets, Vol 22, N. 5, pp. 46{62.(2016).
  • K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96(1986)
  • K. T. Atanassov, Temporal intuitionistic fuzzy sets. Comptes Rendus de l'Academie Bul-gare,Vol. 44, N.7,pp. 5{7 (1991)
  • S. K. Samanta , T. K.Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topol-ogy. BUSEFAL, Vol. 73,pp. 8-17 (1997)
  • R. Lowen, Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysisand Applications, Vol. 56, N.3,pp. 621-633 (1976)
  • S. J. Lee, E. P. Lee, The category of intuitionistic fuzzy topological spaces. Bulletin of theKorean Mathematical Society, Vol 37, N.1,pp. 63-76 (2000).
  • S. Yılmaz, G. Çuvalcıoğlu, On level operators for temporal intuitionistic fuzzy sets. Notes onIntuitionistic Fuzzy Sets, Vol. 20, N.2,pp. 6{15 (2014)
Yıl 2019, , 144 - 153, 29.07.2019
https://doi.org/10.33773/jum.522688

Öz

Kaynakça

  • A.Sostak, On a fuzzy topological structure. Rend Circ. Mat. Palermo Supp., Vol. 11,pp. 89-103(1985).
  • C. L. Chang, Fuzzy topological spaces. J. Math Ana. Appl.,Vol. 24, 182{190.(1968)
  • D. Çoker and M. Demirci , An introduction to intuitionistic topological spaces in Sostak's sense. BUSEFAL, Vol. 67,pp. 67{76 (1996)
  • D. Çoker, An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systemsVol. 88, N. 1, pp. 81-89 (1997)
  • F.Kutlu, O. Atan and T. Bilgin, Distance measure, similarity measure, entropy and inclusionmeasure for temporal intuitionistic fuzzy sets. In: Proceedings of IFSCOM'2016, Mersin/Turkey,pp.130{148 (2016)
  • F. Kutlu ,T. Bilgin , Temporal intuitionistic fuzzy topology in Sostak's sense. Notes on Intu-itionistic Fuzzy Sets, Vol. 21 N.2, pp. 63{70, (2015)
  • F.Kutlu , A. A. Ramadan ,T. Bilgin, On compactness in temporal intuitionistic fuzzy Sostaktopology, Notes on Intuitionistic Fuzzy Sets, Vol 22, N. 5, pp. 46{62.(2016).
  • K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96(1986)
  • K. T. Atanassov, Temporal intuitionistic fuzzy sets. Comptes Rendus de l'Academie Bul-gare,Vol. 44, N.7,pp. 5{7 (1991)
  • S. K. Samanta , T. K.Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topol-ogy. BUSEFAL, Vol. 73,pp. 8-17 (1997)
  • R. Lowen, Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysisand Applications, Vol. 56, N.3,pp. 621-633 (1976)
  • S. J. Lee, E. P. Lee, The category of intuitionistic fuzzy topological spaces. Bulletin of theKorean Mathematical Society, Vol 37, N.1,pp. 63-76 (2000).
  • S. Yılmaz, G. Çuvalcıoğlu, On level operators for temporal intuitionistic fuzzy sets. Notes onIntuitionistic Fuzzy Sets, Vol. 20, N.2,pp. 6{15 (2014)
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Fatih Kutlu 0000-0002-1731-9558

Yayımlanma Tarihi 29 Temmuz 2019
Gönderilme Tarihi 5 Şubat 2019
Kabul Tarihi 3 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kutlu, F. (2019). TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics, 2(2), 144-153. https://doi.org/10.33773/jum.522688
AMA Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. Temmuz 2019;2(2):144-153. doi:10.33773/jum.522688
Chicago Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 2, sy. 2 (Temmuz 2019): 144-53. https://doi.org/10.33773/jum.522688.
EndNote Kutlu F (01 Temmuz 2019) TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics 2 2 144–153.
IEEE F. Kutlu, “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”, JUM, c. 2, sy. 2, ss. 144–153, 2019, doi: 10.33773/jum.522688.
ISNAD Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 2/2 (Temmuz 2019), 144-153. https://doi.org/10.33773/jum.522688.
JAMA Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2019;2:144–153.
MLA Kutlu, Fatih. “TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics, c. 2, sy. 2, 2019, ss. 144-53, doi:10.33773/jum.522688.
Vancouver Kutlu F. TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2019;2(2):144-53.