Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 34 - 41, 31.01.2021
https://doi.org/10.33773/jum.823084

Öz

Kaynakça

  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathematics, Vol.4, No.2, pp.43-57, (2014).
  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, Ideal Limit Superior-Inferior, Gazi University Journal of Science, Vol.30, No.1, pp.401-411, (2017).
  • Alt\i nok. M, Porosity Supremum-Infimum and Porosity Convergence, Konuralp Journal of Mathematics, Vol.6, No.1, pp.163-170, (2018).
  • Fast. H, Sur la convergence statistique., Colloq. Math, Vol.2, pp.241-244, (1951).
  • Fridy. J. A, On statistical convergence, Analysis, Vol.5, pp.301-313, (1985).
  • K\"u\c{c}\"ukaslan. M, Alt\i nok. M, Statistical supremum infimum and statistical convergence, Aligarh Bulletin of Mathematics, Vol.32, pp.1-16, (2013).
  • Milan. P, Density and related topics, Mathematics Institute Slovak Academic of Sciences (2017).
  • Schoenberg. I. J, The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, Amer.Math., Vol.66, pp.361-375, (1959).
  • Steinhaus. H, Sur la convergence ordinaire at la convergence asymptotique, Colloq. Math., Vol.2, No.1, pp.73-74, (1951).
  • Zygmund. A, Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York (1979).

"lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE

Yıl 2021, , 34 - 41, 31.01.2021
https://doi.org/10.33773/jum.823084

Öz

Convergence of real valued sequences especially statistical convergence is very popular subject in Mathematical Analysis. Also, it has got a lot of characterizations in literature. In this paper, we are going to define $\lambda$-statistical supremum and $\lambda$-statistical infimum for real valued sequence $x=(x_n)$. After giving some basic properties of these new notations, then we are going to find a necessary and sufficient condition for to existence of λ-statistical convergence of the sequence $x=(x_n)$.

Kaynakça

  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathematics, Vol.4, No.2, pp.43-57, (2014).
  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, Ideal Limit Superior-Inferior, Gazi University Journal of Science, Vol.30, No.1, pp.401-411, (2017).
  • Alt\i nok. M, Porosity Supremum-Infimum and Porosity Convergence, Konuralp Journal of Mathematics, Vol.6, No.1, pp.163-170, (2018).
  • Fast. H, Sur la convergence statistique., Colloq. Math, Vol.2, pp.241-244, (1951).
  • Fridy. J. A, On statistical convergence, Analysis, Vol.5, pp.301-313, (1985).
  • K\"u\c{c}\"ukaslan. M, Alt\i nok. M, Statistical supremum infimum and statistical convergence, Aligarh Bulletin of Mathematics, Vol.32, pp.1-16, (2013).
  • Milan. P, Density and related topics, Mathematics Institute Slovak Academic of Sciences (2017).
  • Schoenberg. I. J, The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, Amer.Math., Vol.66, pp.361-375, (1959).
  • Steinhaus. H, Sur la convergence ordinaire at la convergence asymptotique, Colloq. Math., Vol.2, No.1, pp.73-74, (1951).
  • Zygmund. A, Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York (1979).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Maya Altınok

Umutcan Kaya 0000-0002-0419-6106

Mehmet Küçükaslan

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 8 Kasım 2020
Kabul Tarihi 18 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Altınok, M., Kaya, U., & Küçükaslan, M. (2021). "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. Journal of Universal Mathematics, 4(1), 34-41. https://doi.org/10.33773/jum.823084
AMA Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. Ocak 2021;4(1):34-41. doi:10.33773/jum.823084
Chicago Altınok, Maya, Umutcan Kaya, ve Mehmet Küçükaslan. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics 4, sy. 1 (Ocak 2021): 34-41. https://doi.org/10.33773/jum.823084.
EndNote Altınok M, Kaya U, Küçükaslan M (01 Ocak 2021) "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. Journal of Universal Mathematics 4 1 34–41.
IEEE M. Altınok, U. Kaya, ve M. Küçükaslan, “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”, JUM, c. 4, sy. 1, ss. 34–41, 2021, doi: 10.33773/jum.823084.
ISNAD Altınok, Maya vd. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics 4/1 (Ocak 2021), 34-41. https://doi.org/10.33773/jum.823084.
JAMA Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. 2021;4:34–41.
MLA Altınok, Maya vd. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics, c. 4, sy. 1, 2021, ss. 34-41, doi:10.33773/jum.823084.
Vancouver Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. 2021;4(1):34-41.