Let $\omega _{i}$ be weight
functions on $%
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
$, (i=1,2,3,4). In this work, we define $CW_{\omega _{1},\omega _{2},\omega _{3},\omega
_{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ to be vector space of $\left( f,g\right) \in \left( L_{\omega
_{1}}^{p}\times L_{\omega _{2}}^{q}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ such that the $\tau -$Wigner transforms $W_{\tau }\left(
f,.\right) $ and $W_{\tau }\left( .,g\right) $ belong to $L_{\omega
_{3}}^{r}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ and $L_{\omega _{4}}^{s}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ respectively for $1\leq p,q,r,s<\infty $, $\tau \in \left(
0,1\right) $. We endow this space with a sum norm and prove that $%
CW_{\omega _{1},\omega _{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ is a Banach space. We also show that $CW_{\omega _{1},\omega
_{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ becomes an essential Banach module over $\left( L_{\omega
_{1}}^{1}\times L_{\omega _{2}}^{1}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $. We then consider approximate identities.
Wigner transform Essential Banach module Approximate identity
Giresun University
FEN-BAP-C-150219-01
FEN-BAP-C-150219-01
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Proje Numarası | FEN-BAP-C-150219-01 |
Yayımlanma Tarihi | 31 Temmuz 2021 |
Gönderilme Tarihi | 26 Haziran 2021 |
Kabul Tarihi | 28 Temmuz 2021 |
Yayımlandığı Sayı | Yıl 2021 |