Araştırma Makalesi
BibTex RIS Kaynak Göster

ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM

Yıl 2021, , 188 - 200, 31.07.2021
https://doi.org/10.33773/jum.958029

Öz

Let $\omega _{i}$ be weight
functions on $%
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
$, (i=1,2,3,4). In this work, we define $CW_{\omega _{1},\omega _{2},\omega _{3},\omega
_{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ to be vector space of $\left( f,g\right) \in \left( L_{\omega
_{1}}^{p}\times L_{\omega _{2}}^{q}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ such that the $\tau -$Wigner transforms $W_{\tau }\left(
f,.\right) $ and $W_{\tau }\left( .,g\right) $ belong to $L_{\omega
_{3}}^{r}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ and $L_{\omega _{4}}^{s}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ respectively for $1\leq p,q,r,s<\infty $, $\tau \in \left(
0,1\right) $. We endow this space with a sum norm and prove that $%
CW_{\omega _{1},\omega _{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ is a Banach space. We also show that $CW_{\omega _{1},\omega
_{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ becomes an essential Banach module over $\left( L_{\omega
_{1}}^{1}\times L_{\omega _{2}}^{1}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $. We then consider approximate identities.

Destekleyen Kurum

Giresun University

Proje Numarası

FEN-BAP-C-150219-01

Kaynakça

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249, (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981, (2010).
  • R.S. Doran, J. Wichmann, Approximate identity and factorization in Banach modules, Lecture Notes in Math. Springer-Verlag, 768 (1979).
  • M. Duman, Ö. Kulak, On Function Spaces with Fractional Wavelet Transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Mathematica Slovaca, 46(1), 71-82 (1996).
  • I.G. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc.Lon.Math.Soc., 19(3), 327-340 (1969).
  • K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston (2001).
  • Ö. Kulak, A.T. Gürkanlı, On Function Spaces with Wavelet Transform in L-omega-p-R, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford (1968).
  • A. Sandıkçı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728- 745 (2014).
  • A. Sandıkçı, Multilinear tau -wigner transform, J. Pseudo-Differ. Oper. Appl., 11, 1465-1487 (2020).
  • H.C. Wang, Homogeneous Banach algebras, New York: Marcel Dekker Inc. (1977).
Yıl 2021, , 188 - 200, 31.07.2021
https://doi.org/10.33773/jum.958029

Öz

Proje Numarası

FEN-BAP-C-150219-01

Kaynakça

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249, (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981, (2010).
  • R.S. Doran, J. Wichmann, Approximate identity and factorization in Banach modules, Lecture Notes in Math. Springer-Verlag, 768 (1979).
  • M. Duman, Ö. Kulak, On Function Spaces with Fractional Wavelet Transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Mathematica Slovaca, 46(1), 71-82 (1996).
  • I.G. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc.Lon.Math.Soc., 19(3), 327-340 (1969).
  • K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston (2001).
  • Ö. Kulak, A.T. Gürkanlı, On Function Spaces with Wavelet Transform in L-omega-p-R, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford (1968).
  • A. Sandıkçı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728- 745 (2014).
  • A. Sandıkçı, Multilinear tau -wigner transform, J. Pseudo-Differ. Oper. Appl., 11, 1465-1487 (2020).
  • H.C. Wang, Homogeneous Banach algebras, New York: Marcel Dekker Inc. (1977).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Öznur Kulak 0000-0003-1433-3159

Proje Numarası FEN-BAP-C-150219-01
Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 26 Haziran 2021
Kabul Tarihi 28 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kulak, Ö. (2021). ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. Journal of Universal Mathematics, 4(2), 188-200. https://doi.org/10.33773/jum.958029
AMA Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. Temmuz 2021;4(2):188-200. doi:10.33773/jum.958029
Chicago Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 188-200. https://doi.org/10.33773/jum.958029.
EndNote Kulak Ö (01 Temmuz 2021) ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. Journal of Universal Mathematics 4 2 188–200.
IEEE Ö. Kulak, “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”, JUM, c. 4, sy. 2, ss. 188–200, 2021, doi: 10.33773/jum.958029.
ISNAD Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 188-200. https://doi.org/10.33773/jum.958029.
JAMA Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. 2021;4:188–200.
MLA Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 188-00, doi:10.33773/jum.958029.
Vancouver Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. 2021;4(2):188-200.