Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 166 - 171, 31.07.2021
https://doi.org/10.33773/jum.964785

Öz

Kaynakça

  • Chandrasekhara Rao. K, Gowri. R, On closure space, Varahmithir Journal of Mathematics Sciences, Vol.5, No.2, pp.375-378, (2005).
  • Boonpok. C, Generalized closed sets in Čech closed spaces. Acta Universitatis Apulensis. Mathematics-Informatics, Vol.22, pp.133-140, (2010).
  • Cech. E, Topological Spaces, Topological Papers of Eduard $\mathrm{\check{C}}$ech, Academia, Preque, pp.436-472, (1968).
  • Chvalina. J, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.12, pp.107-116, (1976).
  • Chvalina. J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.17, pp.81-86, (1981).
  • Skula. L, Systeme von stetigen abbildungen, Czech. math. J., Vol. 17, No.92, 45-52, (1967).
  • Slapal. J, Closure operations for digital topology, Theoret. Comput. Sci., Vol.305, pp.457-471, (2003).
  • Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, Vol.19, pp.89-96, (1970).
  • Balachandran. K, Sundaram, P, Maki. H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., Vol.12, pp.5-13, (1991).
  • Palaniappan. M, Chandrasekhara Rao. K, Regular Generalized Closed Sets, Kyungpook Mathematical Journal, Vol.33, No.2, pp.211-219, (1993).

NEW TYPES OF SETS IN CECH CLOSURE SPACES

Yıl 2021, , 166 - 171, 31.07.2021
https://doi.org/10.33773/jum.964785

Öz

In this paper, we analysis and introduce the concepts of regular closed (open) sets and regular generalized closed (open) sets in Cech closure spaces. Also, we investigate the properties such as intersection, union, subspaces of regular generalized closed (open) sets of a Cech closure spaces. Moreover, by giving counter examples of one-sided theorems, it has been shown that the converse situation is not realized.

Kaynakça

  • Chandrasekhara Rao. K, Gowri. R, On closure space, Varahmithir Journal of Mathematics Sciences, Vol.5, No.2, pp.375-378, (2005).
  • Boonpok. C, Generalized closed sets in Čech closed spaces. Acta Universitatis Apulensis. Mathematics-Informatics, Vol.22, pp.133-140, (2010).
  • Cech. E, Topological Spaces, Topological Papers of Eduard $\mathrm{\check{C}}$ech, Academia, Preque, pp.436-472, (1968).
  • Chvalina. J, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.12, pp.107-116, (1976).
  • Chvalina. J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.17, pp.81-86, (1981).
  • Skula. L, Systeme von stetigen abbildungen, Czech. math. J., Vol. 17, No.92, 45-52, (1967).
  • Slapal. J, Closure operations for digital topology, Theoret. Comput. Sci., Vol.305, pp.457-471, (2003).
  • Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, Vol.19, pp.89-96, (1970).
  • Balachandran. K, Sundaram, P, Maki. H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., Vol.12, pp.5-13, (1991).
  • Palaniappan. M, Chandrasekhara Rao. K, Regular Generalized Closed Sets, Kyungpook Mathematical Journal, Vol.33, No.2, pp.211-219, (1993).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Naime Demirtaş 0000-0003-4137-4810

Orhan Dalkılıç 0000-0003-3875-1398

Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 7 Temmuz 2021
Kabul Tarihi 26 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Demirtaş, N., & Dalkılıç, O. (2021). NEW TYPES OF SETS IN CECH CLOSURE SPACES. Journal of Universal Mathematics, 4(2), 166-171. https://doi.org/10.33773/jum.964785
AMA Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. Temmuz 2021;4(2):166-171. doi:10.33773/jum.964785
Chicago Demirtaş, Naime, ve Orhan Dalkılıç. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 166-71. https://doi.org/10.33773/jum.964785.
EndNote Demirtaş N, Dalkılıç O (01 Temmuz 2021) NEW TYPES OF SETS IN CECH CLOSURE SPACES. Journal of Universal Mathematics 4 2 166–171.
IEEE N. Demirtaş ve O. Dalkılıç, “NEW TYPES OF SETS IN CECH CLOSURE SPACES”, JUM, c. 4, sy. 2, ss. 166–171, 2021, doi: 10.33773/jum.964785.
ISNAD Demirtaş, Naime - Dalkılıç, Orhan. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 166-171. https://doi.org/10.33773/jum.964785.
JAMA Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. 2021;4:166–171.
MLA Demirtaş, Naime ve Orhan Dalkılıç. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 166-71, doi:10.33773/jum.964785.
Vancouver Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. 2021;4(2):166-71.