Araştırma Makalesi
BibTex RIS Kaynak Göster

A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA

Yıl 2018, Cilt: 1 Sayı: 2, 190 - 194, 31.07.2018

Öz

In this article we introduce and analyze a new concept of BCC-filters in BCC-algebra. In addition, the relationship of this new concept with BCC-ideals has been analyzed also.

Kaynakça

  • S. A. Celani. Deductive systems of BCK-algebras. \emph{Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica}, \textbf{43}(2004), 27-–32.
  • W. A. Dudek. On BCC-algebras. \emph{Logique and Analyse}, \textbf{129-130} (1990), 103--111.
  • W. A. Dudek. On proper BCC-algebras. \emph{Bull. Inst. Math. Academia Sinica}, \textbf{20}(1992), 137-150.
  • W. A. Dudek and X. H. Zhang. On ideals and congruences in BCC-algebras. \emph{Czechoslovak Math. J.}, \textbf{48}(1)(1998), 21-–29.
  • W. A. Dudek. A new characterization of ideals in BCC-algebras. \emph{Novi Sad J. Math.}, 29(1)(1999), 139--145.
  • W. A. Dudek and X. H. Zhang. Initial segemnts in BCC-algebras. \emph{Mathematica Moravica}, \textbf{4}(2000), 27--34.
  • R. Hala\v s. Annihilators in BCK-algebras. \emph{Czechoslovak Math. J.}, \textbf{53}(4)(2003), 1001--1007.
  • B. Karamdin and S. A. Bhatti. Ideals and branches of BCC-algebras. \emph{East Asian Math. J.}, \textbf{23} (2007), 247--255.
  • Y. Komori. The variety generated by BCC-algebras is finitely based. \emph{Reports Fac. Sci. Shizuoka Univ.}, \textbf{17}(1983), 13--16.
  • Y. Komori. The class of BCC-algebras is not a variety. \emph{Math. Japonica}, \textbf{29} (1984), 391--394.
Yıl 2018, Cilt: 1 Sayı: 2, 190 - 194, 31.07.2018

Öz

Kaynakça

  • S. A. Celani. Deductive systems of BCK-algebras. \emph{Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica}, \textbf{43}(2004), 27-–32.
  • W. A. Dudek. On BCC-algebras. \emph{Logique and Analyse}, \textbf{129-130} (1990), 103--111.
  • W. A. Dudek. On proper BCC-algebras. \emph{Bull. Inst. Math. Academia Sinica}, \textbf{20}(1992), 137-150.
  • W. A. Dudek and X. H. Zhang. On ideals and congruences in BCC-algebras. \emph{Czechoslovak Math. J.}, \textbf{48}(1)(1998), 21-–29.
  • W. A. Dudek. A new characterization of ideals in BCC-algebras. \emph{Novi Sad J. Math.}, 29(1)(1999), 139--145.
  • W. A. Dudek and X. H. Zhang. Initial segemnts in BCC-algebras. \emph{Mathematica Moravica}, \textbf{4}(2000), 27--34.
  • R. Hala\v s. Annihilators in BCK-algebras. \emph{Czechoslovak Math. J.}, \textbf{53}(4)(2003), 1001--1007.
  • B. Karamdin and S. A. Bhatti. Ideals and branches of BCC-algebras. \emph{East Asian Math. J.}, \textbf{23} (2007), 247--255.
  • Y. Komori. The variety generated by BCC-algebras is finitely based. \emph{Reports Fac. Sci. Shizuoka Univ.}, \textbf{17}(1983), 13--16.
  • Y. Komori. The class of BCC-algebras is not a variety. \emph{Math. Japonica}, \textbf{29} (1984), 391--394.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Daniel A. Romano

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 24 Nisan 2018
Kabul Tarihi 5 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Romano, D. A. (2018). A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA. Journal of Universal Mathematics, 1(2), 190-194.
AMA Romano DA. A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA. JUM. Temmuz 2018;1(2):190-194.
Chicago Romano, Daniel A. “A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 190-94.
EndNote Romano DA (01 Temmuz 2018) A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA. Journal of Universal Mathematics 1 2 190–194.
IEEE D. A. Romano, “A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA”, JUM, c. 1, sy. 2, ss. 190–194, 2018.
ISNAD Romano, Daniel A. “A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA”. Journal of Universal Mathematics 1/2 (Temmuz 2018), 190-194.
JAMA Romano DA. A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA. JUM. 2018;1:190–194.
MLA Romano, Daniel A. “A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 190-4.
Vancouver Romano DA. A NOTE ON IDEALS AND FILTERS IN BCC-ALGEBRA. JUM. 2018;1(2):190-4.