Adile, D., Aktan, N.: Some results on Nearly cosymplectic manifolds, Universal Journal of
Mathematics and Applications, 2(2019), 218-223.
Ayar, G., Tekin, P., Aktan, N., : Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian Journal Of Industrial and Applied Mathematics, 10(2019), 51-58.
Ayar, G., Yıldırım, M. : Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis(Nis) Ser. Math. Inform., 34(2019), 503-510.
Ayar, G., Yıldırım, M.: etha-Ricci solitons on Nearly Kenmotsu Manifolds, Asian-European Journal of Mathematics, 12(2019), 2040002-2040010.
Barua, B., De, U. C.: Characterizations of a Riemannian manifold admitting Ricci solitons. Facta Universitatis(NIS)Ser. Math. Inform., 28(2013), 127-132.
Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,Springer-Verlag, Berlin, 1976.
Blair, D. E. Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math. 39 (1971), 285-292.
Blair, D. E., Goldberg S.I. Topology of almost contact manifolds, J.Differential Geometry 1(1967), 347-354.
Catino, G., Mazzieri, L. Gradient Einstein solitons, Nonlinear Anal. 132(2016), 66-94.
Chave, T., Valent, G.: Quasi-Einstein metrics and their renormalizability properties. Helv.
Phys. Acta. 69(1996), 344-347.
Chen, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1973.
Chinea, D., de Leon M., Marrero J. C.: Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
Chow, B., Knopf, D., The Ricci flow: An introduction, Mathematical Surveys and Monographs 110. American Math. Soc., 2004.
De, U. C. Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds. The Aligarh
Bull. of Maths., 29(2010), 29-34.
De Nicola, A., Dileo, G., Yudin, I. On Nearly Sasakian and Nearly Cosymplectic Manifolds,
Annali di Matematica , 197(2018), 127-138.
Endo, H. On the Curvature Tensor of Nearly Cosymplectic Manifolds of Constant phi-sectional
curvature. An. Stiit. Univ. "Al. I. Cuza" Iasi. Mat. (N.S.), (2005), 439-454.
Friedan, D. Non linear models in 2 + epsilon dimensions. Ann. Phys. 163(1985), 318419.
Gray, A., Nearly Kahler Manifolds, J. Differential Geom. 4 (1970), 283-309.
Hamilton, R. S. Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17(1982), 255-306.
Hamilton, R. S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz,
CA, 1986), Contemp. Math., American Math. Soc.,71(1988),237-262.
Ivey, T.: Ricci solitons on compact 3-manifolds. Differential Geo. Appl. 3(1993), 301-307.
Libermann, P.: Sur les automorphismes innit esimaux des structures symplectiques et de
atructures de contact, oll. G'eom. Diff. Globale, (1959), 37-59.
Mukut Mani Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222
(or arXiv:0801.4222v1 [math.DG] for this version)
Perelman, G., The entopy formula for the Ricci
ow and its geometric applications,
http://arxiv.org/abs/math.DG/02111159.
Sharma, R.: Certain results on K-contact and (k; m)-contact manifolds. Journal of Geometry,
89(2008), 138-147
Yıldırım, M., Ayar, G.: Nearly cosymplectic manifolds with nullity conditions, Asian-Europan
journal of Mathematics, 12(2019), 2040012-2040021.
RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS
Adile, D., Aktan, N.: Some results on Nearly cosymplectic manifolds, Universal Journal of
Mathematics and Applications, 2(2019), 218-223.
Ayar, G., Tekin, P., Aktan, N., : Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian Journal Of Industrial and Applied Mathematics, 10(2019), 51-58.
Ayar, G., Yıldırım, M. : Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis(Nis) Ser. Math. Inform., 34(2019), 503-510.
Ayar, G., Yıldırım, M.: etha-Ricci solitons on Nearly Kenmotsu Manifolds, Asian-European Journal of Mathematics, 12(2019), 2040002-2040010.
Barua, B., De, U. C.: Characterizations of a Riemannian manifold admitting Ricci solitons. Facta Universitatis(NIS)Ser. Math. Inform., 28(2013), 127-132.
Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,Springer-Verlag, Berlin, 1976.
Blair, D. E. Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math. 39 (1971), 285-292.
Blair, D. E., Goldberg S.I. Topology of almost contact manifolds, J.Differential Geometry 1(1967), 347-354.
Catino, G., Mazzieri, L. Gradient Einstein solitons, Nonlinear Anal. 132(2016), 66-94.
Chave, T., Valent, G.: Quasi-Einstein metrics and their renormalizability properties. Helv.
Phys. Acta. 69(1996), 344-347.
Chen, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1973.
Chinea, D., de Leon M., Marrero J. C.: Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
Chow, B., Knopf, D., The Ricci flow: An introduction, Mathematical Surveys and Monographs 110. American Math. Soc., 2004.
De, U. C. Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds. The Aligarh
Bull. of Maths., 29(2010), 29-34.
De Nicola, A., Dileo, G., Yudin, I. On Nearly Sasakian and Nearly Cosymplectic Manifolds,
Annali di Matematica , 197(2018), 127-138.
Endo, H. On the Curvature Tensor of Nearly Cosymplectic Manifolds of Constant phi-sectional
curvature. An. Stiit. Univ. "Al. I. Cuza" Iasi. Mat. (N.S.), (2005), 439-454.
Friedan, D. Non linear models in 2 + epsilon dimensions. Ann. Phys. 163(1985), 318419.
Gray, A., Nearly Kahler Manifolds, J. Differential Geom. 4 (1970), 283-309.
Hamilton, R. S. Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17(1982), 255-306.
Hamilton, R. S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz,
CA, 1986), Contemp. Math., American Math. Soc.,71(1988),237-262.
Ivey, T.: Ricci solitons on compact 3-manifolds. Differential Geo. Appl. 3(1993), 301-307.
Libermann, P.: Sur les automorphismes innit esimaux des structures symplectiques et de
atructures de contact, oll. G'eom. Diff. Globale, (1959), 37-59.
Mukut Mani Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222
(or arXiv:0801.4222v1 [math.DG] for this version)
Perelman, G., The entopy formula for the Ricci
ow and its geometric applications,
http://arxiv.org/abs/math.DG/02111159.
Sharma, R.: Certain results on K-contact and (k; m)-contact manifolds. Journal of Geometry,
89(2008), 138-147
Yıldırım, M., Ayar, G.: Nearly cosymplectic manifolds with nullity conditions, Asian-Europan
journal of Mathematics, 12(2019), 2040012-2040021.
Yıldırım, M., & Ayar, G. (2021). RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. Journal of Universal Mathematics, 4(2), 201-208.
AMA
Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. Temmuz 2021;4(2):201-208.
Chicago
Yıldırım, Mustafa, ve Gülhan Ayar. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 201-8.
EndNote
Yıldırım M, Ayar G (01 Temmuz 2021) RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. Journal of Universal Mathematics 4 2 201–208.
IEEE
M. Yıldırım ve G. Ayar, “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”, JUM, c. 4, sy. 2, ss. 201–208, 2021.
ISNAD
Yıldırım, Mustafa - Ayar, Gülhan. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 201-208.
JAMA
Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. 2021;4:201–208.
MLA
Yıldırım, Mustafa ve Gülhan Ayar. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 201-8.
Vancouver
Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. 2021;4(2):201-8.