Araştırma Makalesi
BibTex RIS Kaynak Göster

CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG'S SENSE

Yıl 2021, Cilt: 4 Sayı: 2, 157 - 165, 31.07.2021
https://doi.org/10.33773/jum.962880

Öz

In this paper, connectedness in temporal intuitionistic fuzzy topology in Chang's sense is introduced and investigated. In the content of the paper, basic definitions, theorems and propositions about connectedness in temporal intuitionistic fuzzy topology in Chang's sense are given.

Destekleyen Kurum

MINEVINO CO (MOLDOVA)

Proje Numarası

MNV-2021-1002

Kaynakça

  • K. T. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96, (1986).
  • K. Atanassov, More on Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems. 33(1):37-45, (1989).
  • K. T. Atanassov, Temporal Intuitionistic Fuzzy Sets. Comptes Rendus de l’Academie Bulgare,Vol. 44, N.7,pp. 5–7 (1991).
  • C. L. Chang, Fuzzy topological Spaces. J. Math Ana. Appl.,Vol. 24, 182–190,(1968).
  • D. Çoker and M. Demirci , An Introduction to Intuitionistic Topological Spaces in Šostak’s Sense. BUSEFAL, Vol. 67,pp. 67–76, (1996).
  • D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces. Fuzzy Sets and Systems, Vol. 88, No. 1, pp. 81-89, (1997).
  • A. A. A. El-Latif and M. M. Khalaf, Connectedness in Intuitionistic Fuzzy Topological Spaces in Šostak’s Sense. Italian Journal of Pure and Applied Mathematics. No. 35, 649-668, (2015).
  • Y.C. Kim and S.E. Abbas, Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. Vol.20, No.1, 117-134, (2005).
  • F. Kutlu and T. Bilgin, Temporal Intuitionistic Fuzzy Topology in Šostak’s Sense. Notes on Intuitionistic Fuzzy Sets, Vol. 21 N.2, pp. 63–70, (2015).
  • F. Kutlu, O. Atan and T. Bilgin, Distance Measure, Similarity Measure, Entropy and Inclusion Measure for Temporal Intuitionistic Fuzzy Sets. In: Proceedings of IFSCOM’2016, Mersin/Turkey, pp.130–148, (2016).
  • F. Kutlu, Temporal Intuitionistic Fuzzy Topology in Chang’s Sense, Journal of Universal Mathematics. Vol.2 No.2, 144-153, (2019).
  • S. Yılmaz and G. Çuvalcıoğlu, On Level Operators for Temporal Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, Vol. 20, N.2, pp. 6–15, (2014).
  • A. Šostak, On a Fuzzy Topological Structure. Rend Circ. Mat. Palermo Supp., Vol. 11, pp. 89-103, (1985).
Yıl 2021, Cilt: 4 Sayı: 2, 157 - 165, 31.07.2021
https://doi.org/10.33773/jum.962880

Öz

Proje Numarası

MNV-2021-1002

Kaynakça

  • K. T. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96, (1986).
  • K. Atanassov, More on Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems. 33(1):37-45, (1989).
  • K. T. Atanassov, Temporal Intuitionistic Fuzzy Sets. Comptes Rendus de l’Academie Bulgare,Vol. 44, N.7,pp. 5–7 (1991).
  • C. L. Chang, Fuzzy topological Spaces. J. Math Ana. Appl.,Vol. 24, 182–190,(1968).
  • D. Çoker and M. Demirci , An Introduction to Intuitionistic Topological Spaces in Šostak’s Sense. BUSEFAL, Vol. 67,pp. 67–76, (1996).
  • D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces. Fuzzy Sets and Systems, Vol. 88, No. 1, pp. 81-89, (1997).
  • A. A. A. El-Latif and M. M. Khalaf, Connectedness in Intuitionistic Fuzzy Topological Spaces in Šostak’s Sense. Italian Journal of Pure and Applied Mathematics. No. 35, 649-668, (2015).
  • Y.C. Kim and S.E. Abbas, Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. Vol.20, No.1, 117-134, (2005).
  • F. Kutlu and T. Bilgin, Temporal Intuitionistic Fuzzy Topology in Šostak’s Sense. Notes on Intuitionistic Fuzzy Sets, Vol. 21 N.2, pp. 63–70, (2015).
  • F. Kutlu, O. Atan and T. Bilgin, Distance Measure, Similarity Measure, Entropy and Inclusion Measure for Temporal Intuitionistic Fuzzy Sets. In: Proceedings of IFSCOM’2016, Mersin/Turkey, pp.130–148, (2016).
  • F. Kutlu, Temporal Intuitionistic Fuzzy Topology in Chang’s Sense, Journal of Universal Mathematics. Vol.2 No.2, 144-153, (2019).
  • S. Yılmaz and G. Çuvalcıoğlu, On Level Operators for Temporal Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, Vol. 20, N.2, pp. 6–15, (2014).
  • A. Šostak, On a Fuzzy Topological Structure. Rend Circ. Mat. Palermo Supp., Vol. 11, pp. 89-103, (1985).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Feride Tuğrul 0000-0001-7690-8080

Proje Numarası MNV-2021-1002
Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 5 Temmuz 2021
Kabul Tarihi 26 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Tuğrul, F. (2021). CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics, 4(2), 157-165. https://doi.org/10.33773/jum.962880
AMA Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. Temmuz 2021;4(2):157-165. doi:10.33773/jum.962880
Chicago Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 157-65. https://doi.org/10.33773/jum.962880.
EndNote Tuğrul F (01 Temmuz 2021) CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics 4 2 157–165.
IEEE F. Tuğrul, “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”, JUM, c. 4, sy. 2, ss. 157–165, 2021, doi: 10.33773/jum.962880.
ISNAD Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 157-165. https://doi.org/10.33773/jum.962880.
JAMA Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2021;4:157–165.
MLA Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 157-65, doi:10.33773/jum.962880.
Vancouver Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2021;4(2):157-65.