Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 4 Sayı: 2, 252 - 258, 31.07.2021
https://doi.org/10.33773/jum.967960

Öz

Kaynakça

  • Referans1 R. Alizade, G. Bilhan, P. F. Smith. Modules whose maximal submodules have supplements. Communications in Algebra, Vol. 29(6), pp. 2389-2405 (2001).
  • Referans2 E. Büyükaşık, E. Türkmen. Strongly radical supplemented modules. Ukr. Math. J., 63, No. 8, 1306-1313 (2011).
  • Referans3 C. Faith. Rings whose modules have maximal submodules. Publicacions Mathematiques, Vol. 39, pp. 201-214 (1995).
  • Referans4 E. Kaynar, H. Çalışıcı, E. Türkmen. ss-supplemented modules. Communications Faculty of Science University of Ankara Series A1 Mathematics and statistics, Vol. 69, 1, pp 473-485 (2020).
  • Referans5 S. H. Mohamed and B. J. Müller. Continuous and discrete modules. London Math. Soc., Lect. Note Ser., 147 (1990).
  • Referans6 B. Nişancı Türkmen, A. Pancar. On generalizations of $\oplus$-supplemented modules. Ukrainian Mathematical Journal, Vol. 65(4) pp. 612-622 (2013).
  • Referans7 D. W. Sharpe, P. Vamos. Injective modules. Cambridge University Press, Cambridge, (1972).
  • Referans8 Y. Şahin, B. Nişancı Türkmen. Locally-artinian supplemented modules. 9th International Eurasian Conference On Mathematical Sciences and Applications Abstract Book,Skopje, North Macedonia, pp. 26 (2020).
  • Referans9 R. Wisbauer. Foundations of modules and rings. Gordon and Breach, Springer-Verlag (1991).
  • Referans10 D. X. Zhou, X. R. Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, Vol. 35, pp 1051-1062 (2011).
  • Referans11 H. Zöschinger. Moduln, die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, Vol. 35, pp. 267-287 (1974).
  • Referans12 H. Zöschinger. Komplementierte moduln über dedekindringen. Journal of Algebra, Vol. 29, pp. 42-56 (1974).
  • Referans13 H. Zöschinger. Basis-untermoduln und quasi-kotorsions-moduln ber diskreten bewertungsringen. Bayer. Akad. Wiss. Math. Natur. Kl., Vol. 2, pp. 9-16 (1976).

ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES

Yıl 2021, Cilt: 4 Sayı: 2, 252 - 258, 31.07.2021
https://doi.org/10.33773/jum.967960

Öz

The aim of this paper is to investigate generalizations of locally artinian supplemented modules in module theory, namely locally artinian radical supplemented modules and strongly locally artinian radical supplemented modules. We have obtained elementary features for them. Also, we have characterized strongly locally artinian radical supplemented modules by left perfect rings. Finally, we have proved that the reduced part of a strongly locally artinian radical supplemented $R$-module has the same property over a Dedekind domain $R$.

Kaynakça

  • Referans1 R. Alizade, G. Bilhan, P. F. Smith. Modules whose maximal submodules have supplements. Communications in Algebra, Vol. 29(6), pp. 2389-2405 (2001).
  • Referans2 E. Büyükaşık, E. Türkmen. Strongly radical supplemented modules. Ukr. Math. J., 63, No. 8, 1306-1313 (2011).
  • Referans3 C. Faith. Rings whose modules have maximal submodules. Publicacions Mathematiques, Vol. 39, pp. 201-214 (1995).
  • Referans4 E. Kaynar, H. Çalışıcı, E. Türkmen. ss-supplemented modules. Communications Faculty of Science University of Ankara Series A1 Mathematics and statistics, Vol. 69, 1, pp 473-485 (2020).
  • Referans5 S. H. Mohamed and B. J. Müller. Continuous and discrete modules. London Math. Soc., Lect. Note Ser., 147 (1990).
  • Referans6 B. Nişancı Türkmen, A. Pancar. On generalizations of $\oplus$-supplemented modules. Ukrainian Mathematical Journal, Vol. 65(4) pp. 612-622 (2013).
  • Referans7 D. W. Sharpe, P. Vamos. Injective modules. Cambridge University Press, Cambridge, (1972).
  • Referans8 Y. Şahin, B. Nişancı Türkmen. Locally-artinian supplemented modules. 9th International Eurasian Conference On Mathematical Sciences and Applications Abstract Book,Skopje, North Macedonia, pp. 26 (2020).
  • Referans9 R. Wisbauer. Foundations of modules and rings. Gordon and Breach, Springer-Verlag (1991).
  • Referans10 D. X. Zhou, X. R. Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, Vol. 35, pp 1051-1062 (2011).
  • Referans11 H. Zöschinger. Moduln, die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, Vol. 35, pp. 267-287 (1974).
  • Referans12 H. Zöschinger. Komplementierte moduln über dedekindringen. Journal of Algebra, Vol. 29, pp. 42-56 (1974).
  • Referans13 H. Zöschinger. Basis-untermoduln und quasi-kotorsions-moduln ber diskreten bewertungsringen. Bayer. Akad. Wiss. Math. Natur. Kl., Vol. 2, pp. 9-16 (1976).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Burcu Nişancı Türkmen 0000-0001-7900-0529

Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 8 Temmuz 2021
Kabul Tarihi 29 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Nişancı Türkmen, B. (2021). ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES. Journal of Universal Mathematics, 4(2), 252-258. https://doi.org/10.33773/jum.967960
AMA Nişancı Türkmen B. ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. Temmuz 2021;4(2):252-258. doi:10.33773/jum.967960
Chicago Nişancı Türkmen, Burcu. “ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 252-58. https://doi.org/10.33773/jum.967960.
EndNote Nişancı Türkmen B (01 Temmuz 2021) ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES. Journal of Universal Mathematics 4 2 252–258.
IEEE B. Nişancı Türkmen, “ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES”, JUM, c. 4, sy. 2, ss. 252–258, 2021, doi: 10.33773/jum.967960.
ISNAD Nişancı Türkmen, Burcu. “ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 252-258. https://doi.org/10.33773/jum.967960.
JAMA Nişancı Türkmen B. ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. 2021;4:252–258.
MLA Nişancı Türkmen, Burcu. “ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 252-8, doi:10.33773/jum.967960.
Vancouver Nişancı Türkmen B. ON GENERALIZATIONS OF LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. 2021;4(2):252-8.