PERFECT CODES OVER HURWITZ INTEGERS INDUCED BY CIRCULANT GRAPHS
Yıl 2022,
Cilt: 5 Sayı: 1, 24 - 35, 01.03.2022
Murat Güzeltepe
,
Gökhan Güner
Öz
In this paper, a new family of t−error correcting perfect codes over Hurwitz integers is
presented. To obtain these perfect codes, the perfect t−dominating sets over the circulant
graphs are used. The codewords of such perfect codes are generated by the elements of a
subgroup of the considered group.
Kaynakça
- [1] M. Güzeltepe, Codes over Hurwitz integers, Discrete Math. 313(2013), 704–714.
- [2] M. Güzeltepe, A. Altınel, Perfect 1−error-correcting Hurwitz weight codes, Math.
Commun. 22(2017), 265–272.
- [3] M. Güzeltepe, O. Heden, Perfect Mannheim, Lipschitz and Hurwitz weight codes,
Math. Commun. 19(2014), 253–276.
- [4] R.W. Hamming, Error detecting and error correcting codes, Bell System Technical
Journal 29(1950), 147—160.
- [5] O. Heden, A new construction of group and nongroup perfect codes, Information and
Control 34(1977), 314-–323.
- [6] O. Heden, M. Güzeltepe, On perfect 1-ε-error-correcting codes, Math. Commun.
20(2015), 23—35.
- [7] O. Heden, M. Güzeltepe, Perfect 1−error-correcting Lipschitz weight codes, Math.
Commun. 21(2016), 23-–30.
- [8] K. Huber, Codes over Gaussian integers, IEEE Trans. Inform. Theory 40(1994),
207—216.
- [9] C.Y. Lee, Some properties of non-binary error correcting codes, IEEE Trans. Inform.
Theory 4(1958), 77—82.
- [10] B. B. Lindström , On group and nongroup perfect codes in q symbols, Math. Scand.
25(1969), 149-–158.
- [11] C. Martínez, E. Stafford, R. Beivide, E. Gabidulin, Perfect codes over Lipschitz integers, in: Proc. IEEE Int. Symp. Information Theory, Nice, 2007, 1366—
1370.
- [12] C. Martínez, R. Beivide, E. Gabidulin, Perfect codes from Cayley graphs over
Lipschitz integers, IEEE Trans. Inf. Theory 55(2009), 3552-–3562.
- [13] C. Martínez, R. Beivide, E. Gabidulin, Perfect codes for metrics induced by
circulant graphs, IEEE Trans. Inf. Theory 53(2007), 3042—3052.
- [14] J. Schönheim, On linear and nonlinear, single-error-correcting q−nary perfect codes,
Information and Control 12(1968), 23-–26.
- [15] Y.L. Vasil’ev, On nongroup close-packed codes, Problemi Tekhn. Kibernet. Robot.
8(1962), 337—339.
- [16] J. G. Proakis, M. Salehi, Communications Systems Engineering, Second Edition,
Prentice Hall.
- [17] S. Lin, D. J. Costello, Jr., Error Control Coding, Second Edition, Prentice Hall.
Yıl 2022,
Cilt: 5 Sayı: 1, 24 - 35, 01.03.2022
Murat Güzeltepe
,
Gökhan Güner
Destekleyen Kurum
TÜBİTAK
Kaynakça
- [1] M. Güzeltepe, Codes over Hurwitz integers, Discrete Math. 313(2013), 704–714.
- [2] M. Güzeltepe, A. Altınel, Perfect 1−error-correcting Hurwitz weight codes, Math.
Commun. 22(2017), 265–272.
- [3] M. Güzeltepe, O. Heden, Perfect Mannheim, Lipschitz and Hurwitz weight codes,
Math. Commun. 19(2014), 253–276.
- [4] R.W. Hamming, Error detecting and error correcting codes, Bell System Technical
Journal 29(1950), 147—160.
- [5] O. Heden, A new construction of group and nongroup perfect codes, Information and
Control 34(1977), 314-–323.
- [6] O. Heden, M. Güzeltepe, On perfect 1-ε-error-correcting codes, Math. Commun.
20(2015), 23—35.
- [7] O. Heden, M. Güzeltepe, Perfect 1−error-correcting Lipschitz weight codes, Math.
Commun. 21(2016), 23-–30.
- [8] K. Huber, Codes over Gaussian integers, IEEE Trans. Inform. Theory 40(1994),
207—216.
- [9] C.Y. Lee, Some properties of non-binary error correcting codes, IEEE Trans. Inform.
Theory 4(1958), 77—82.
- [10] B. B. Lindström , On group and nongroup perfect codes in q symbols, Math. Scand.
25(1969), 149-–158.
- [11] C. Martínez, E. Stafford, R. Beivide, E. Gabidulin, Perfect codes over Lipschitz integers, in: Proc. IEEE Int. Symp. Information Theory, Nice, 2007, 1366—
1370.
- [12] C. Martínez, R. Beivide, E. Gabidulin, Perfect codes from Cayley graphs over
Lipschitz integers, IEEE Trans. Inf. Theory 55(2009), 3552-–3562.
- [13] C. Martínez, R. Beivide, E. Gabidulin, Perfect codes for metrics induced by
circulant graphs, IEEE Trans. Inf. Theory 53(2007), 3042—3052.
- [14] J. Schönheim, On linear and nonlinear, single-error-correcting q−nary perfect codes,
Information and Control 12(1968), 23-–26.
- [15] Y.L. Vasil’ev, On nongroup close-packed codes, Problemi Tekhn. Kibernet. Robot.
8(1962), 337—339.
- [16] J. G. Proakis, M. Salehi, Communications Systems Engineering, Second Edition,
Prentice Hall.
- [17] S. Lin, D. J. Costello, Jr., Error Control Coding, Second Edition, Prentice Hall.