Araştırma Makalesi
BibTex RIS Kaynak Göster

ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS

Yıl 2022, Cilt: 5 Sayı: 2, 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Öz

Let $K$ be a field of characteristic zero, $X_n=\{x_1,\dots,x_n\}$ be a set of variables, $K[X_n]$ be the polynomial algebra and $F_n$ be the free metabelian Lie algebra of rank $n$ generated by $X_n$ over the base field $K$. Well known result of Weitzenb\"ock states that $K[X_n]^\delta=\big \{u\in K[X_n] \big\vert\ \delta(u)=0\big \}$ is finitely generated as an algebra, where $\delta$ is a locally nilpotent linear derivation of $K[X_n]$. Extending this ideal to the non commutative algebras, recently the algebra $F_n^\delta$ of constants in the free metabelian Lie algebras have been investigated. According to the findings, $F_n^\delta$ is not finitely generated as a Lie algebra; whereas, $F_n^\delta \cap F_n^\prime$ is finitely generated $K[X_n]^\delta$-module and a list of generators for $n\le 4$ was given. In this work, in filling the gap in the list of small $n'$s we work in $F_5$ and give a list of generators of $F_5^\delta$ where $\delta(x_5)=x_4$, $\delta(x_4)=0$, $\delta(x_3)=x_2$, $\delta(x_2)=x_1$ and $\delta(x_1)=0$.

Kaynakça

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
Yıl 2022, Cilt: 5 Sayı: 2, 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Öz

Kaynakça

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Andre Dushımırımana 0000-0002-7486-2557

Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 14 Temmuz 2022
Kabul Tarihi 23 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Dushımırımana, A. (2022). ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics, 5(2), 185-192. https://doi.org/10.33773/jum.1143787
AMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. Temmuz 2022;5(2):185-192. doi:10.33773/jum.1143787
Chicago Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5, sy. 2 (Temmuz 2022): 185-92. https://doi.org/10.33773/jum.1143787.
EndNote Dushımırımana A (01 Temmuz 2022) ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics 5 2 185–192.
IEEE A. Dushımırımana, “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”, JUM, c. 5, sy. 2, ss. 185–192, 2022, doi: 10.33773/jum.1143787.
ISNAD Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5/2 (Temmuz 2022), 185-192. https://doi.org/10.33773/jum.1143787.
JAMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5:185–192.
MLA Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics, c. 5, sy. 2, 2022, ss. 185-92, doi:10.33773/jum.1143787.
Vancouver Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5(2):185-92.