Araştırma Makalesi
BibTex RIS Kaynak Göster

Conformable Anlamında Kesirli Mertebeden Fokker-Planck Denkleminin Analitik Çözümü

Yıl 2022, Cilt: 12 Sayı: 1, 9 - 14, 01.06.2022

Öz

Bu çalışmada, istatistiksel fizikte önemli bir role sahip olan doğrusal olmayan kesirli Fokker Planck (FP) denklemi, yeni tanımlanmış
olan conformable Laplace ayrıştırma metodu (CLAM) ile ilk kez çözülmektedir. Bu yeni algoritma, conformable Laplace dönüşümü
ile Adomian ayrıştırma yöntemini birleştirmektedir. Çalışmamızda ilk olarak, kesirli türevin bazı temel tanımları ve teoremleri
conformable anlamında verilmiştir. Ardından CLAM’ ın genel algoritması anlatılmıştır. Bundan sonra, kullanılan metot grafikler
yardımıyla sayısal örnekle verilerek desteklenmiştir. Sayısal örnekten görüldüğü üzere, conformable Laplace ayrıştırma yöntemi güçlü,
güvenilir, kullanımı kolay ve kesirli mertebeden çok çeşitli kısmi türevli diferensiyel denklemlere uygulanabilir özelliklere sahiptir

Kaynakça

  • Abdeljawad, T. 2015. On Conformable Fractional Calculus. J. Comput. Applied Mathematics. 279: 57-66, DOI: 10.1016/j.cam.2014.10.016
  • Adomian, G. 1990. A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations. Math. Comp. Modelling, 13(7): 17-43, DOI: 10.1016/0895-7177(90)90125-7
  • Atangana, A. 2015. Derivative with a New Parameter: Theory, Methods and Applications. Academic Press. DOI: https://doi.org/10.1016/c2014-0-04844-7
  • Atangana, A., Baleanu, D., Alsaedi, A. 2015. New Properties of Conformable Derivative. Open Math., DOI: 10.1515/math-2015-0081
  • Awan, MU., Noor, MA., Mihai, MV., Noor, KI. 2017. Conformable Fractional Hermite-Hadamard Inequalities via Preinvex Functions. Tbilisi Math. J., 10(4): 129-141, DOI: 10.1515/tmj-2017-0051
  • Ayata, M., Özkan, O. 2020. A New Application of Conformable Laplace Decomposition Method for Fractional Newell-Whitehead-Segel Equation. AIMS Math., 5(6): 7402-7412, DOI: 10.3934/math.2020474
  • Cherruault, Y., Saccomandi, G., Some, B. 1992. New Results for Convergence of Adomian's Method Applied to Integral Equations. Math. Comp. Mod., 16(2): 85-93, DOI: 10.1016/0895-7177(92)90009-A
  • Chung, WS. 2015. Fractional Newton Mechanics with Conformable Fractional Derivative. J. Comp. Appl. Math., 290, 150-158, DOI: 10.1016/j.cam.2015.04.049
  • Eslami, M., Rezazadeh, H. 2016. The First Integral Method for Wu–Zhang System with Conformable Time-Fractional Derivative. Calcolo, 53(3), 475-485, DOI: 10.1007/s10092-015-0158-8
  • Eslami M, Taleghani SA, 2019. Differential Transform Method for Conformable Fractional Partial Differential Equations. Iranian J. Numerical Analy. Opt., 9(2), 17-29, DOI: 10.22067/IJNAO.V9I2.67976
  • Frank, TD. 2004. Stochastic Feedback, Nonlinear Families of Markov Processes, and Nonlinear Fokker–Planck Equations. Physica A: Statistical Mech. its Appl., 331(3-4), 391-408, DOI: 10.1016/j.physa.2003.09.056
  • Geng, F., Cui, M. 2011. A Novel Method for Nonlinear Two-Point Boundary Value Problems: Combination of ADM and RKM. Appl. Math. Comp., 217(9), 4676-4681, DOI: 10.1016/j.amc.2010.11.020
  • Hammad, MA., Khalil, R. 2014. Abel's Formula and Wronskian for Conformable Fractional Differential Equations. Inter. J. Diff. Eqns. Appl., 13(3), DOI: 10.12732/ijdea.v13i3.1753
  • Hosseini, SG., Abbasbandy, S. 2015. Solution of Lane-Emden Type Equations By Combination Of The Spectral Method and Adomian Decomposition Method. Math. Probl. Eng., 2015, DOI: 10.1155/2015/534754
  • Jordan, R., Kinderlehrer, D., Otto, F. 1998. The Variational Formulation of the Fokker-Planck Equation. SIAM J. Math. Anal., 29(1), 1-17, DOI: 10.1137/S0036141096303359
  • Keyanpour, M., Mahmoudi, A. 2012. A Hybrid Method for Solving Optimal Control Problems. IAENG Int. J. Appl. Math., 42(2), 80-86
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M. 2014. A New Definition of Fractional Derivative. J. Comput. Appl. Math., 264, 65-70, DOI: 10.1016/j.cam.2014.01.002
  • Kurt, A., Tasbozan, O., Baleanu, D. 2017. New Solutions for Conformable Fractional Nizhnik–Novikov–Veselov System via G'/G Expansion Method and Homotopy Analysis Methods. Optic. Quantum Elect., 49(10), 333, DOI: doi.org/10.1007/s11082-017-1163-8
  • Ladrani, FZ., Cherif, AB. 2020. Oscillation Tests for Conformable Fractional Differential Equations with Damping. Punjab Univ. J. Math., 52(2), 73-82
  • Miller, KS., Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley
  • Momani, S., Odibat, Z. 2007. Homotopy Perturbation Method for Nonlinear Partial Differential Equations of Fractional Order. Physics Letters A, 365(5-6), 345-350, DOI: 10.1016/j.physleta.2007.01.046
  • Nourazar, S., Ramezanpour, M., Doosthoseini, A. 2013. A New Algorithm to Solve the Gas Dynamics Equation: An application of the Fourier Transform Adomian Decomposition Method. Appl. Math. Sci., 7(86), 4281-4286, DOI: 10.12988/ams.2013.33147
  • Özkan, O., Kurt, A. 2018a. The Analytical Solutions for Conformable Integral Equations and Integro-Differential Equations by Conformable Laplace Transform. Opt. Quantum Elect., 50(2), 81, DOI: 10.1007/s11082-018-1342-2
  • Özkan, O., Kurt, A. 2018b. On Conformable Double Laplace Transform. Opt. Quantum Elect., 50(2), 103. DOI: 10.1007/s11082-018-1372-9
  • Özkan, O., Kurt, A. 2019. Exact Solutions of Fractional Partial Differential Equation Systems with Conformable Derivative. Filomat, 33(5), 1313-1322, DOI: 10.2298/FIL1905313O
  • Podlubny, I. 1999. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elseiver, DOI: 10.1016/s0076-5392(99)x8001-5
  • Rach, R. 1984. A Convenient Computational Form for the Adomian Polynomials. J. Math. Analy. Appl., 102(2), 415-419, DOI: 10.1016/0022-247X(84)90181-1
  • Ray, SS., Bera, RK. 2005. An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method. Appl. Math. Comput., 167(1), 561-571, DOI: 10.1016/j.amc.2004.07.020
  • Ray, SS. 2016. New Analytical Exact Solutions of Time Fractional Kdv–Kzk Equation By Kudryashov Methods. Chinese Physics B, 25(4), 040204, DOI: 10.1088/1674-1056/25/4/040204
  • Risken, H., Frank, T. 1989. Methods of Solution and Applications. Springer Series Synergetics, 18
  • Qi, Y., Wang, X. 2020. Asymptotical Stability Analysis of Conformable Fractional Systems. J. Taibah Univ. Sci., 14(1), 44-49, DOI: 10.1080/16583655.2019.1701390
  • Tayyan, BA., Sakka, AH. 2020. Lie Symmetry Analysis of Some Conformable Fractional Partial Differential Equations. Arabian J. Math., 9(1), 201-212, DOI: 10.1007/s40065-018-0230-8
  • Wu, GC., Lee, EWM. 2010. Fractional Variational Iteration Method and its Application. Physics Letters A, 374(25): 2506-2509, DOI: 10.1016/j.physleta.2010.04.034
  • Zafar, A., Rezazadeh, H., Bekir, A., Malik, A. 2019. Exact Solutions of 3-Dimensional Fractional mKdV Equations in Conformable Form via exp(-ϕ(τ)) Expansion Method. SN Appl. Sci., 1(11), 1436, DOI: 10.1007/s42452-019-1424-1
  • Zhang, S., Zhang, HQ. 2011. Fractional Sub-Equation Method and its Applications to Nonlinear Fractional PDEs. Physics Letters A, 375(7), 1069-1073, DOI: 10.1016/j.physleta.2011.01.029
  • Zhao, D., Luo, M. 2017. General Conformable Fractional Derivative and its Physical Interpretation. Calcolo, 54(3), 903-917, DOI: 10.1007/s10092-017-0213-8

An Analytical Solution to Conformable Fractional Fokker-Planck Equation

Yıl 2022, Cilt: 12 Sayı: 1, 9 - 14, 01.06.2022

Öz

It is the first time in this work that a newly defined conformable Laplace decomposition method (CLDM) is applied to nonlinear
fractional Fokker Planck (FP) equation which has a major role in statistical physics. This new algorithm combines conformable
Laplace transform and Adomian decomposition method. First, some basic theorems and definitions of fractional derivative are given
in conformable sense. Then, the general algorithm of CLDM is presented. After that, the presented method is supported by numerical
example by the aid of figures. As is seen from the numerical example, conformable Laplace decomposition method is strong, easy to
use, reliable and applicable to a wide variety of fractional PDEs.

Kaynakça

  • Abdeljawad, T. 2015. On Conformable Fractional Calculus. J. Comput. Applied Mathematics. 279: 57-66, DOI: 10.1016/j.cam.2014.10.016
  • Adomian, G. 1990. A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations. Math. Comp. Modelling, 13(7): 17-43, DOI: 10.1016/0895-7177(90)90125-7
  • Atangana, A. 2015. Derivative with a New Parameter: Theory, Methods and Applications. Academic Press. DOI: https://doi.org/10.1016/c2014-0-04844-7
  • Atangana, A., Baleanu, D., Alsaedi, A. 2015. New Properties of Conformable Derivative. Open Math., DOI: 10.1515/math-2015-0081
  • Awan, MU., Noor, MA., Mihai, MV., Noor, KI. 2017. Conformable Fractional Hermite-Hadamard Inequalities via Preinvex Functions. Tbilisi Math. J., 10(4): 129-141, DOI: 10.1515/tmj-2017-0051
  • Ayata, M., Özkan, O. 2020. A New Application of Conformable Laplace Decomposition Method for Fractional Newell-Whitehead-Segel Equation. AIMS Math., 5(6): 7402-7412, DOI: 10.3934/math.2020474
  • Cherruault, Y., Saccomandi, G., Some, B. 1992. New Results for Convergence of Adomian's Method Applied to Integral Equations. Math. Comp. Mod., 16(2): 85-93, DOI: 10.1016/0895-7177(92)90009-A
  • Chung, WS. 2015. Fractional Newton Mechanics with Conformable Fractional Derivative. J. Comp. Appl. Math., 290, 150-158, DOI: 10.1016/j.cam.2015.04.049
  • Eslami, M., Rezazadeh, H. 2016. The First Integral Method for Wu–Zhang System with Conformable Time-Fractional Derivative. Calcolo, 53(3), 475-485, DOI: 10.1007/s10092-015-0158-8
  • Eslami M, Taleghani SA, 2019. Differential Transform Method for Conformable Fractional Partial Differential Equations. Iranian J. Numerical Analy. Opt., 9(2), 17-29, DOI: 10.22067/IJNAO.V9I2.67976
  • Frank, TD. 2004. Stochastic Feedback, Nonlinear Families of Markov Processes, and Nonlinear Fokker–Planck Equations. Physica A: Statistical Mech. its Appl., 331(3-4), 391-408, DOI: 10.1016/j.physa.2003.09.056
  • Geng, F., Cui, M. 2011. A Novel Method for Nonlinear Two-Point Boundary Value Problems: Combination of ADM and RKM. Appl. Math. Comp., 217(9), 4676-4681, DOI: 10.1016/j.amc.2010.11.020
  • Hammad, MA., Khalil, R. 2014. Abel's Formula and Wronskian for Conformable Fractional Differential Equations. Inter. J. Diff. Eqns. Appl., 13(3), DOI: 10.12732/ijdea.v13i3.1753
  • Hosseini, SG., Abbasbandy, S. 2015. Solution of Lane-Emden Type Equations By Combination Of The Spectral Method and Adomian Decomposition Method. Math. Probl. Eng., 2015, DOI: 10.1155/2015/534754
  • Jordan, R., Kinderlehrer, D., Otto, F. 1998. The Variational Formulation of the Fokker-Planck Equation. SIAM J. Math. Anal., 29(1), 1-17, DOI: 10.1137/S0036141096303359
  • Keyanpour, M., Mahmoudi, A. 2012. A Hybrid Method for Solving Optimal Control Problems. IAENG Int. J. Appl. Math., 42(2), 80-86
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M. 2014. A New Definition of Fractional Derivative. J. Comput. Appl. Math., 264, 65-70, DOI: 10.1016/j.cam.2014.01.002
  • Kurt, A., Tasbozan, O., Baleanu, D. 2017. New Solutions for Conformable Fractional Nizhnik–Novikov–Veselov System via G'/G Expansion Method and Homotopy Analysis Methods. Optic. Quantum Elect., 49(10), 333, DOI: doi.org/10.1007/s11082-017-1163-8
  • Ladrani, FZ., Cherif, AB. 2020. Oscillation Tests for Conformable Fractional Differential Equations with Damping. Punjab Univ. J. Math., 52(2), 73-82
  • Miller, KS., Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley
  • Momani, S., Odibat, Z. 2007. Homotopy Perturbation Method for Nonlinear Partial Differential Equations of Fractional Order. Physics Letters A, 365(5-6), 345-350, DOI: 10.1016/j.physleta.2007.01.046
  • Nourazar, S., Ramezanpour, M., Doosthoseini, A. 2013. A New Algorithm to Solve the Gas Dynamics Equation: An application of the Fourier Transform Adomian Decomposition Method. Appl. Math. Sci., 7(86), 4281-4286, DOI: 10.12988/ams.2013.33147
  • Özkan, O., Kurt, A. 2018a. The Analytical Solutions for Conformable Integral Equations and Integro-Differential Equations by Conformable Laplace Transform. Opt. Quantum Elect., 50(2), 81, DOI: 10.1007/s11082-018-1342-2
  • Özkan, O., Kurt, A. 2018b. On Conformable Double Laplace Transform. Opt. Quantum Elect., 50(2), 103. DOI: 10.1007/s11082-018-1372-9
  • Özkan, O., Kurt, A. 2019. Exact Solutions of Fractional Partial Differential Equation Systems with Conformable Derivative. Filomat, 33(5), 1313-1322, DOI: 10.2298/FIL1905313O
  • Podlubny, I. 1999. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elseiver, DOI: 10.1016/s0076-5392(99)x8001-5
  • Rach, R. 1984. A Convenient Computational Form for the Adomian Polynomials. J. Math. Analy. Appl., 102(2), 415-419, DOI: 10.1016/0022-247X(84)90181-1
  • Ray, SS., Bera, RK. 2005. An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method. Appl. Math. Comput., 167(1), 561-571, DOI: 10.1016/j.amc.2004.07.020
  • Ray, SS. 2016. New Analytical Exact Solutions of Time Fractional Kdv–Kzk Equation By Kudryashov Methods. Chinese Physics B, 25(4), 040204, DOI: 10.1088/1674-1056/25/4/040204
  • Risken, H., Frank, T. 1989. Methods of Solution and Applications. Springer Series Synergetics, 18
  • Qi, Y., Wang, X. 2020. Asymptotical Stability Analysis of Conformable Fractional Systems. J. Taibah Univ. Sci., 14(1), 44-49, DOI: 10.1080/16583655.2019.1701390
  • Tayyan, BA., Sakka, AH. 2020. Lie Symmetry Analysis of Some Conformable Fractional Partial Differential Equations. Arabian J. Math., 9(1), 201-212, DOI: 10.1007/s40065-018-0230-8
  • Wu, GC., Lee, EWM. 2010. Fractional Variational Iteration Method and its Application. Physics Letters A, 374(25): 2506-2509, DOI: 10.1016/j.physleta.2010.04.034
  • Zafar, A., Rezazadeh, H., Bekir, A., Malik, A. 2019. Exact Solutions of 3-Dimensional Fractional mKdV Equations in Conformable Form via exp(-ϕ(τ)) Expansion Method. SN Appl. Sci., 1(11), 1436, DOI: 10.1007/s42452-019-1424-1
  • Zhang, S., Zhang, HQ. 2011. Fractional Sub-Equation Method and its Applications to Nonlinear Fractional PDEs. Physics Letters A, 375(7), 1069-1073, DOI: 10.1016/j.physleta.2011.01.029
  • Zhao, D., Luo, M. 2017. General Conformable Fractional Derivative and its Physical Interpretation. Calcolo, 54(3), 903-917, DOI: 10.1007/s10092-017-0213-8
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Muammer Ayata 0000-0001-9436-6414

Ozan Özkan 0000-0001-6430-1126

Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Ayata, M., & Özkan, O. (2022). An Analytical Solution to Conformable Fractional Fokker-Planck Equation. Karaelmas Fen Ve Mühendislik Dergisi, 12(1), 9-14. https://doi.org/10.7212/karaelmasfen.941684
AMA Ayata M, Özkan O. An Analytical Solution to Conformable Fractional Fokker-Planck Equation. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2022;12(1):9-14. doi:10.7212/karaelmasfen.941684
Chicago Ayata, Muammer, ve Ozan Özkan. “An Analytical Solution to Conformable Fractional Fokker-Planck Equation”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 1 (Haziran 2022): 9-14. https://doi.org/10.7212/karaelmasfen.941684.
EndNote Ayata M, Özkan O (01 Haziran 2022) An Analytical Solution to Conformable Fractional Fokker-Planck Equation. Karaelmas Fen ve Mühendislik Dergisi 12 1 9–14.
IEEE M. Ayata ve O. Özkan, “An Analytical Solution to Conformable Fractional Fokker-Planck Equation”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 1, ss. 9–14, 2022, doi: 10.7212/karaelmasfen.941684.
ISNAD Ayata, Muammer - Özkan, Ozan. “An Analytical Solution to Conformable Fractional Fokker-Planck Equation”. Karaelmas Fen ve Mühendislik Dergisi 12/1 (Haziran 2022), 9-14. https://doi.org/10.7212/karaelmasfen.941684.
JAMA Ayata M, Özkan O. An Analytical Solution to Conformable Fractional Fokker-Planck Equation. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:9–14.
MLA Ayata, Muammer ve Ozan Özkan. “An Analytical Solution to Conformable Fractional Fokker-Planck Equation”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 1, 2022, ss. 9-14, doi:10.7212/karaelmasfen.941684.
Vancouver Ayata M, Özkan O. An Analytical Solution to Conformable Fractional Fokker-Planck Equation. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(1):9-14.