Araştırma Makalesi
BibTex RIS Kaynak Göster

Deneysel Çalışma ile Küf Büyümesi için Yapı Malzemelerinin Kritik Bağıl Neminin Belirlenmesi

Yıl 2022, Cilt: 12 Sayı: 1, 67 - 74, 01.06.2022

Öz

Yapı malzemelerin küf mantarlara karşı direnci, malzeme özellikleri, ortam sıcaklığı ve bağıl nem seviyesi ile doğrudan ilişkilidir. Kritik
bağıl nem, bağıl nem, substrat üzerinde küf mantarlarının gelişebileceği noktaya ulaştığında meydana gelir. Küf mantarlarının üreme
koşullarını ele almak ve binadaki nem koşullarına bağlı olarak daha uygun malzemeler kullanmak için bir strateji geliştirilmelidir.
Çalışmada yapı malzemelerinin küf direncini daha iyi anlamak ve küf oluşumu riskini en aza indirmek için substrat kategorisine
bağlı olarak kritik bağıl nemini belirlenmesi amaçlanmıştır. Bu çalışmada, her substrat kategorisinin küf oluşumuna karşı direncini
değerlendirmek için altı yapı malzemenin kritik bağıl nemi belirlendi. Yapı malzemeleri altı küf sporu (Penicillium, Cladosporium,
Chaetomium, Scopulariopsis, Aspergillus ve Acremonium) ile aşılandı ve 22°C’de (%75-95) bir desikatörde inkübe edildi. Üç ay boyunca
numuneler haftada bir kez analiz edildi. Laboratuvar testlerinde, küf oluşumuna en duyarlı, substrat kategori I (alçı levha) olmuştur.
Cam ve kompozit numunelerinin hiçbirinde üreme tespit edilmedi. Kritik nem seviyesi farklı substrat kategorileri için farklıydı.
Örneğin, alçıpan (kategori I) için kritik nem seviyesi %80, taş yünü için (kategori II) ise %85 idi. Farklı bağıl nem seviyelerinde kritik
küf gelişimi için gereken süre değişiklik göstermiştir. Bu kapsamda alçı levha için kritik küf gelişimi %75 bağıl nemde 12 hafta, %95
bağıl nemde ise bir haftadır. Ortamın bağıl nemi ne kadar yüksek olursa, substrat üzerinde kritik küf oluşumu için gereken sürenin o
kadar kısa olduğunu göstermektedir.

Teşekkür

İTÜ Mimarlık Fakültesi yapı malzemeleri laboratuvarında her zaman malzeme kullanımımızda bize yardımcı olan teknisyen İbrahim Öztürk'e teşekkürlerimizi sunarız.

Kaynakça

  • Adan, O. C. G. 1994. On the fungal defacement of interior finishes. Ph. D. Thesis, Eindhoven Technical University, Holland.
  • Andersen, B., Frisvad, J. C., Søndergaard, I., Rasmussen, I. S., Larsen, L. S. 2011. Associations between fungal species and water-damaged building materials. AEM, 77(12), 4180–4188. https://doi.org/10.1128/AEM.02513-10
  • Ayerst, G. 1969. The effects of moisture and temperature on growth and spore germination in some fungi. Stored Prod. Res, 5(2), 127–141. https://doi.org/10.1016/0022-474X(69)90055-1
  • Chang, J. C. S., Foarde, K. K., Vanosdell, D. W. 1995. Growth evaluation of fungi (Penicillium and Aspergillus spp.) on ceiling tiles. Atmos. Enviro, 29(17), 2331–2337. https://doi.org/10.1016/1352-2310(95)00062-4
  • Department of Defense (U.S.), 2010. MIL-STD-810G. Environmental Engineering Considerations and Laboratory Tests. Method 508.6. Fungus.
  • Doll, S. C and Burge, H. A. 2001. Characterization of Fungi Occuring on "New" Gypsum Wallboard. Conference Proceedings IAQ 2001. Moisture, Microbes, and Health Effects: Indoor Air Quality and Moisture in Buildings, San Francisco, California.
  • Frühwald, E., Li, Y., Wads̈o, L. (2008). Image analysis study of mould susceptibility of spruce and larch wood dried or heat-treated at different temperatures. Science and Engineering, 3(1–2), 55–61. https://doi.org/10.1080/17480270802607889
  • Grant, C., Hunter, C.A., Flannigan, B., Bravery, A.F. 1989. The moisture requirements of moulds isolated from domestic dwellings. Int biodeterior biodegrad, 259-284. https://doi.org/10.1016/0265-3036(89)90002-X
  • Hofbauer, W., Krueger, N., Breuer, K., Sedlbauer, K. 2008. Mould resistance assessment of building materials – Material specific isopleth-systems for practical application. August, 17–22.
  • Hyvärinen, A., Meklin, T., Vepsäläinen, A., Nevalainen, A. 2002. Fungi and actinobacteria in moisture-damaged building materials—concentrations and diversity. Intl Biodeterioration & Biodegradation, 49(1), 27-37. https://doi.org/10.1016/S0964-8305(01)00103-2
  • Johansson, P., Ekstrand-Tobin, A., Svensson, T., Bok, G. 2012. Laboratory study to determine the critical moisture level for mould growth on building materials. Intl Biodeterioration & Biodegradation, 73, 23-32. https://doi.org/10.1016/j.ibiod.2012.05.014
  • Johansson, P., Conference, I., Interactions, C. M., & Johansson, P. 2018. Determination of the Critical Moisture Level for Mould Growth on Building Materials. Ph. D. thesis, Lund University Faculty of engineering, Sweden.
  • Klamer, M., Morsing, E., Husemoen, T. 2004. Fungal growth on different insulation materials exposed to different moisture regimes. Int biodeterioration & biodegradation, 54(4), 277-282. https://doi.org/10.1016/j.ibiod.2004.03.016
  • Moon, H. J. 2005. Assessing Mold Risks in Buildings under Uncertainty. Phd Thesis, College of Architecture Georgia Institute of Technology, Georgia.
  • Nielsen, K. 2004. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterioration & Biodegradation, 54(4), 325–336. https://doi.org/10.1016/j.ibiod.2004.05.002
  • Nielsen, KF. 2002. Mould growth on building materials: Secondary metabolites, mycotoxins and biomarkers. Ph. D. thesis. Technical University of Denmark. Pasanen, A.L., Kasanen, J.P., Rautiala, S., Ikaheimoa, M., Rantamaki, J., Kaariainen, H., Kalliokoski, P. 2000. Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. Int Biodeterioration & Biodegradation, 46(2), 117-127. https://doi.org/10.1016/S0964-8305(00)00093-7
  • Ritschkoff, A.C., Viitanen, H.A., Koskela, K. 2000. The response of building materials to the mould exposure at different humidity and temperature conditions. Healthy Buildings 2000, Espoo, Finland. Samson, R. A., Schimmelcultures, C., Miller, J. D. 2001. Microorganisms in Home and Indoor Work Environments: diversity, health impacts, investigation and control. CRC press, London. https://doi.org/10.4324/9780203302934
  • Sedlbauer, K. 2002. Prediction of Mould Growth by Hygrothermal Calculation. Journal of Build. Phys, 25(4), 321–336. https://doi.org/10.1177/0075424202025004093
  • Viitanen, H. 2004. Critical conditions for the mould growth in concrete and in other materials contacted with concrete-durability of concrete against mould growth, VVT Working Papers.
  • Viitanen, Hannu, Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., Lähdesmäki, K. 2010. Moisture and bio-deterioration risk of building materials and structures. Journal of Build. Phys. https://doi.org/10.1177/1744259109343511
  • Viitaneu, H. 1998. Factors affecting the development of mould and brown rot decay in wooden material and wooden structures: Effect of humidity, temperature and exposure Department of Forest Products. Ph.D. thesis, Uppsala, The Swedish University of Agricultural Sciences, Sweden.
  • Wang, Q. 1992. Wood-based boards-Response to attack by mould and stain fungi. Ph. D. thesis, Uppsala Swedish Univ. of Agricultural Sciences, Sweden.

Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study

Yıl 2022, Cilt: 12 Sayı: 1, 67 - 74, 01.06.2022

Öz

Resistance of materials to mold fungi is directly related to the material properties and the environmental temperature and relative
humidity level. Critical relative humidity occurs when the relative humidity reaches to the point where mold fungi can grow on the
substrate. A strategy should be developed to address the conditions of mold fungi growth and use more suitable materials depending
on the humidity conditions in the building. The purpose of this research was to establish the essential relative humidity of various
construction materials based on their substrate category in order to get a better understanding of mold resistance and to reduce the
danger of mold development. The critical relative humidity for six building materials was determined in this research to assess each
substrate category’s resistance to mold growth. Inoculation of construction materials with six mold spores (Penicillium, Cladosporium,
Chaetomium, Scopulariopsis, Aspergillus, and Acremonium) and incubation in a desiccator at 22° C (%75-95 ). For 3 months, samples were
analyzed once a week. Mold growth was most sensitive to substrate category I (gypsum board) in this laboratory experiments. There
was no evidence of growth in any of the glass or composite samples. The essential moisture level varied according to substrate category.
For example, the essential humidity level for drywall (category I) was 80%, whereas for rock wool it was 85% (category II). At various
relative humidity levels, the time needed for critical mold development varied. Critical mold development times for gypsum board are
12 weeks at 75% relative humidity and 1 week at 95% relative humidity. The greater the environment relative humidity, the less time
essential mold development requires on the substrate.

Kaynakça

  • Adan, O. C. G. 1994. On the fungal defacement of interior finishes. Ph. D. Thesis, Eindhoven Technical University, Holland.
  • Andersen, B., Frisvad, J. C., Søndergaard, I., Rasmussen, I. S., Larsen, L. S. 2011. Associations between fungal species and water-damaged building materials. AEM, 77(12), 4180–4188. https://doi.org/10.1128/AEM.02513-10
  • Ayerst, G. 1969. The effects of moisture and temperature on growth and spore germination in some fungi. Stored Prod. Res, 5(2), 127–141. https://doi.org/10.1016/0022-474X(69)90055-1
  • Chang, J. C. S., Foarde, K. K., Vanosdell, D. W. 1995. Growth evaluation of fungi (Penicillium and Aspergillus spp.) on ceiling tiles. Atmos. Enviro, 29(17), 2331–2337. https://doi.org/10.1016/1352-2310(95)00062-4
  • Department of Defense (U.S.), 2010. MIL-STD-810G. Environmental Engineering Considerations and Laboratory Tests. Method 508.6. Fungus.
  • Doll, S. C and Burge, H. A. 2001. Characterization of Fungi Occuring on "New" Gypsum Wallboard. Conference Proceedings IAQ 2001. Moisture, Microbes, and Health Effects: Indoor Air Quality and Moisture in Buildings, San Francisco, California.
  • Frühwald, E., Li, Y., Wads̈o, L. (2008). Image analysis study of mould susceptibility of spruce and larch wood dried or heat-treated at different temperatures. Science and Engineering, 3(1–2), 55–61. https://doi.org/10.1080/17480270802607889
  • Grant, C., Hunter, C.A., Flannigan, B., Bravery, A.F. 1989. The moisture requirements of moulds isolated from domestic dwellings. Int biodeterior biodegrad, 259-284. https://doi.org/10.1016/0265-3036(89)90002-X
  • Hofbauer, W., Krueger, N., Breuer, K., Sedlbauer, K. 2008. Mould resistance assessment of building materials – Material specific isopleth-systems for practical application. August, 17–22.
  • Hyvärinen, A., Meklin, T., Vepsäläinen, A., Nevalainen, A. 2002. Fungi and actinobacteria in moisture-damaged building materials—concentrations and diversity. Intl Biodeterioration & Biodegradation, 49(1), 27-37. https://doi.org/10.1016/S0964-8305(01)00103-2
  • Johansson, P., Ekstrand-Tobin, A., Svensson, T., Bok, G. 2012. Laboratory study to determine the critical moisture level for mould growth on building materials. Intl Biodeterioration & Biodegradation, 73, 23-32. https://doi.org/10.1016/j.ibiod.2012.05.014
  • Johansson, P., Conference, I., Interactions, C. M., & Johansson, P. 2018. Determination of the Critical Moisture Level for Mould Growth on Building Materials. Ph. D. thesis, Lund University Faculty of engineering, Sweden.
  • Klamer, M., Morsing, E., Husemoen, T. 2004. Fungal growth on different insulation materials exposed to different moisture regimes. Int biodeterioration & biodegradation, 54(4), 277-282. https://doi.org/10.1016/j.ibiod.2004.03.016
  • Moon, H. J. 2005. Assessing Mold Risks in Buildings under Uncertainty. Phd Thesis, College of Architecture Georgia Institute of Technology, Georgia.
  • Nielsen, K. 2004. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterioration & Biodegradation, 54(4), 325–336. https://doi.org/10.1016/j.ibiod.2004.05.002
  • Nielsen, KF. 2002. Mould growth on building materials: Secondary metabolites, mycotoxins and biomarkers. Ph. D. thesis. Technical University of Denmark. Pasanen, A.L., Kasanen, J.P., Rautiala, S., Ikaheimoa, M., Rantamaki, J., Kaariainen, H., Kalliokoski, P. 2000. Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. Int Biodeterioration & Biodegradation, 46(2), 117-127. https://doi.org/10.1016/S0964-8305(00)00093-7
  • Ritschkoff, A.C., Viitanen, H.A., Koskela, K. 2000. The response of building materials to the mould exposure at different humidity and temperature conditions. Healthy Buildings 2000, Espoo, Finland. Samson, R. A., Schimmelcultures, C., Miller, J. D. 2001. Microorganisms in Home and Indoor Work Environments: diversity, health impacts, investigation and control. CRC press, London. https://doi.org/10.4324/9780203302934
  • Sedlbauer, K. 2002. Prediction of Mould Growth by Hygrothermal Calculation. Journal of Build. Phys, 25(4), 321–336. https://doi.org/10.1177/0075424202025004093
  • Viitanen, H. 2004. Critical conditions for the mould growth in concrete and in other materials contacted with concrete-durability of concrete against mould growth, VVT Working Papers.
  • Viitanen, Hannu, Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., Lähdesmäki, K. 2010. Moisture and bio-deterioration risk of building materials and structures. Journal of Build. Phys. https://doi.org/10.1177/1744259109343511
  • Viitaneu, H. 1998. Factors affecting the development of mould and brown rot decay in wooden material and wooden structures: Effect of humidity, temperature and exposure Department of Forest Products. Ph.D. thesis, Uppsala, The Swedish University of Agricultural Sciences, Sweden.
  • Wang, Q. 1992. Wood-based boards-Response to attack by mould and stain fungi. Ph. D. thesis, Uppsala Swedish Univ. of Agricultural Sciences, Sweden.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Bahar Türk 0000-0002-1185-9174

Mustafa Erkan Karagüler 0000-0002-5385-6182

Dilek Şatana 0000-0002-8827-1504

Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Türk, B., Karagüler, M. E., & Şatana, D. (2022). Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study. Karaelmas Fen Ve Mühendislik Dergisi, 12(1), 67-74. https://doi.org/10.7212/karaelmasfen.993192
AMA Türk B, Karagüler ME, Şatana D. Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2022;12(1):67-74. doi:10.7212/karaelmasfen.993192
Chicago Türk, Bahar, Mustafa Erkan Karagüler, ve Dilek Şatana. “Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 1 (Haziran 2022): 67-74. https://doi.org/10.7212/karaelmasfen.993192.
EndNote Türk B, Karagüler ME, Şatana D (01 Haziran 2022) Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study. Karaelmas Fen ve Mühendislik Dergisi 12 1 67–74.
IEEE B. Türk, M. E. Karagüler, ve D. Şatana, “Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 1, ss. 67–74, 2022, doi: 10.7212/karaelmasfen.993192.
ISNAD Türk, Bahar vd. “Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study”. Karaelmas Fen ve Mühendislik Dergisi 12/1 (Haziran 2022), 67-74. https://doi.org/10.7212/karaelmasfen.993192.
JAMA Türk B, Karagüler ME, Şatana D. Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:67–74.
MLA Türk, Bahar vd. “Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 1, 2022, ss. 67-74, doi:10.7212/karaelmasfen.993192.
Vancouver Türk B, Karagüler ME, Şatana D. Determination of Critical Relative Humidity of Construction Materials for Mold Growth by Experimental Study. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(1):67-74.