Bilinmeyen Dürtüsellik Seviyesine Sahip Toplamsal Gauss Olmayan Gürültü Altında Alt-Optimal Seziciler Kullanarak Darbe Sezimi
Yıl 2022,
Cilt: 12 Sayı: 2, 223 - 230, 24.12.2022
Mehmet Emre Çek
,
Eda Dinç
Öz
Bu çalışmada, kanaldaki gürültünün dağılımı önceden bilinmiyorken gerçek zamanlı dikdörtgensel darbe algılama problemi ele alınmaktadır. Gürültü parametreleri hakkında bilgi olmadığından, sadece alınan gürültülü örnekleri kullanan yumuşak kırpıcı, işaret ilintileyici ve önerilen işaretli güç sezicisi gibi alt-optimal algılayıcılardan gerçek zamanlı darbe sezim problemi için faydalanılır. Bilinmeyen kanal gürültüsünün Gauss olmasının gerekmediğini dikkate alarak, simetrik α-kararlı (SαS) dağılım Gauss olmayan gürültü modeli olarak verilmektedir. Ana amaçlardan birisi mevcut darbenin minimum gözlem aralığında sezilmesi olduğundan, sezim ve yanlış alarm olasılığı ile tanımlanan sezici başarımı Gauss ve dürtüsel davranış gösteren SαS dağılım altında darbe uzunluğuna göre analiz edilmektedir. Verilen alt-optimal sezicilerin, Gauss dağılım altında optimal doğrusal seziciye yakın başarım sergilemekle kalmayıp SαS dağılım altında üstün başarım sağladığı gösterilmektedir. Kanal gürültüsü kuvvetli dürtüselliğe sahip olduğunda işaret ilintileyici ve bu çalışmada tanıtılan işaretli güç sezicisinin yumuşak kırpıcı seziciye kıyasla daha iyi sezim başarımı sergilediği gözlenmektedir. Sonuç olarak, yüksek olasılıkla Gauss olmayan kanal gürültüsü hakkında ön bilgi olmadığında, bu seziciler belirli bir gözlem aralığı içinde darbenin varlığına karar vermek için pratik olarak uygulanabilir. Diğer alt-optimal seziciler arasında, önerilen işaretli güç sezicisinin değişen dürtüsellik sergileyen kanal gürültüsü altında daha kararlı bir sezim başarımı sergilediği gözlenmektedir.
Kaynakça
- Bibalan M., H., Amindavar, H., Amirmazlaghani M., 2017. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach, Signal Process., 130: 323 – 336. Doi: 10.1016/j.sigpro.2016.07.020.
- Clavier, L., Peters G., W., Septier, F., Nevat, I., 2021. Impulsive noise modeling and robust receiver design, EURASIP J. Wireless Com. Network, 2021, 13: 1-30. Doi: 10.1186/s13638-020-01868-1.
- Gao, Y., Tian, M. 2015. A method dealing with complex PRI modulation with adaptive prediction in real-time pulse tracking, IET International Radar Conference, p. 1-4, Hangzhou, China. Doi: 10.1049/cp.2015.1239
- Gencol, K., At, N., Kara, A. 2016. A wavelet-based feature set for recognizing pulse repetition interval modulation patterns, Turk. J. Elec. Eng. Comp. Sci., 24: 3078 – 3090. Doi: 10.3906/elk-1405-152.
- Hakimi, S., Hodtani G., A., 2018. Generalized maximum correntropy detector for non-Gaussian environments, Int. J. Adapt. Control Signal Process., 32. 1: 83 – 97. Doi: 10.1002/acs.2827
- Hao, C., Orlando, D., Liu, J., Yin, C. 2022. Advances in Adaptive Radar Detection and Range Estimation, 1st Ed., Springer, Singapore, 386 pp.
- Huang, X., Zhang, L., Chen, Z., Zhao, R. 2021. Robust detection and motion parameter estimation for weak maneuvering target in the alpha-stable noise environment, Digit. Signal Process., 108: 102885. Doi: 10.1016/j.dsp.2020.102885.
- Johnson, D., H., 1996. Optimal linear detectors for additive noise channels, IEEE Trans. Signal Process., 44. 12: 3079-3084. Doi: 10.1109/78.553481.
- Kay, S. M. 1998. Fundamentals of Statistical Signal Processing – Detection Theory, 1st Ed., Prentice Hall, Pearson Education, Inc. Upper Saddle River, USA, 576 pp.
- Kuruoglu, E. E. 2001. Density parameter estimation of skewed alpha-stable distributions, IEEE Trans. Signal Process., 49. 10: 2192 – 2201. Doi: 10.1109/78.950775.
- Li, C., Niu, Y., Yu, M., Li, Y., Wang, L., Pan, X., 2020. Pulse train detection algorithm based on edge enhancement, Proc. ICWSN Conf., p. 30-34, New York. Doi: 10.1145/3411201.3411202.
- Liu, X., Fan, X., Su, S. 2019. Adaptive pulse edge detection algorithm based on short-time Fourier transforms and difference of box filter, J. Appl. Remote Sens., 13. 2: 024502. Doi: 10.1117/1.JRS.13.024502.
- Ma, X., Nikias, C., 1995. Parameter estimation and blind channel identification in impulsive signal environments, IEEE Trans. Signal Process., 43. 12: 2884 – 2897. Doi:10.1109/78.476432
- Nikias, C. L., Shao, M. 1995. Signal Processing with Alpha-stable Distributions and Applications, 1st Ed., Wiley Interscience, New York, 184 pp.
- Ranney, K., Tom, K., Tadas, D., Tesny, N., Magill, A., Diehl, W., 2021. An efficient pulse detector and pulse width estimator for waveform characterization, Proc. Radar Sensor Tech. XXV, 117421E. Doi: 10.1117/12.2586969.
- Ranney, K. I., Tom, K., Tadas, D., Tesny, N., Magill, A., Diehl, W., 2022. Magnitude-based pulse width estimation via efficient edge detection. J. Appl. Remote Sens., 16. 1: 016509. Doi: 10.1117/1.JRS.16.016509.
- Saleh, T. S., Marsland, I., El-Tanany, M., 2012. Suboptimal detectors for alpha-stable noise: Simplifying design and improving performance, IEEE Trans. Commun., 60.10: 2982 – 2989. Doi: 10.1109/TCOMM.2012.071812.100789.
- Samorodnitsky, G., Taqqu, M., S., 1994. Stable Non-Gaussian Random Processes, 1st Ed., Chapmand & Hall / CRC, New York, 632 pp.
- Sun, B., Xu, J., Hong, W., Li, X., 2021. A novel detection algorithm for radar signal under non-Gaussian clutter, Proc. DSIT, p. 28-31, Shangai. Doi: 10.1145/3478905.3478911.
- Sureka, G., Kiasaleh, K., 2013. Sub-Optimum receiver architecture for AWGN channel with symmetric alpha-stable interference, IEEE Trans. Commun., 61.5: 1926 – 1935. Doi: 10.1109/TCOMM.2013.022713.120490.
- Tsihrintzis, G., Nikias, C., 1996. Fast estimation of the parameters of alpha-stable impulsive interference, IEEE Trans. Signal Process. 44. 6: 1492–1503. Doi: 10.1109/78.506614.
- Tsihrintzis, G., Nikias, C., 1997. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data, IEE Proc. Radar Son. Nav., 144. 1: 29-37. Doi: 10.1049/ip-rsn:19970933.
- Wiley, R. G., 2006. ELINT: The Interception and Analysis of Radar Signals, 1st Ed., Artech House, Boston, USA, 451 pp.
- Win, M., Z., Pinto, P., C., Shepp, L., A., 2009. A Mathematical theory of network interference and its applications, Proc. IEEE, 97. 2: 205-230. Doi: 10.1109/JPROC.2008.2008764.
Pulse Detection Using Sub-Optimal Detectors Under Additive non-Gaussian Noise Having Unknown Level of Impulsiveness
Yıl 2022,
Cilt: 12 Sayı: 2, 223 - 230, 24.12.2022
Mehmet Emre Çek
,
Eda Dinç
Öz
In this study, real time rectangular pulse detection problem is addressed when the channel noise distribution is not known in advance. Since there is no information about the noise parameters, sub-optimal detectors such as soft limiter, sign correlator and the proposed signed power are utilized for real time pulse detection problem using only received noisy samples. Noting that the unknown channel noise is not necessarily to be Gaussian, symmetric α-stable (SαS) distribution is given as non-Gaussian noise model. Since one of the main objectives is to detect the existent pulse within minimum observation interval, detector performances characterized by detection and false alarm probabilities are analyzed with respect to pulse length under both Gaussian and SαS noise. It is shown that not only the given sub-optimal detectors can exhibit performance close to optimal linear detector under Gaussian noise, but also they provide superior performance under SαS distribution. When the channel has strong impulsiveness, it is observed that the sign correlator and signed power detector introduced in this study exhibit better detection performance compared with soft limiter detector. Consequently, these detectors can be practically implemented to determine existence of pulse within a certain observation interval when there is no prior information about channel noise which is most likely non-Gaussian. Among the other sub-optimal detectors, the proposed signed-power detector is observed to exhibit more stable detection performance under channel noise having varying impulsiveness.
Teşekkür
Authors would like to thank Tuğçe Toprak for her technical support in preparation of graphical tools in this paper.
Kaynakça
- Bibalan M., H., Amindavar, H., Amirmazlaghani M., 2017. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach, Signal Process., 130: 323 – 336. Doi: 10.1016/j.sigpro.2016.07.020.
- Clavier, L., Peters G., W., Septier, F., Nevat, I., 2021. Impulsive noise modeling and robust receiver design, EURASIP J. Wireless Com. Network, 2021, 13: 1-30. Doi: 10.1186/s13638-020-01868-1.
- Gao, Y., Tian, M. 2015. A method dealing with complex PRI modulation with adaptive prediction in real-time pulse tracking, IET International Radar Conference, p. 1-4, Hangzhou, China. Doi: 10.1049/cp.2015.1239
- Gencol, K., At, N., Kara, A. 2016. A wavelet-based feature set for recognizing pulse repetition interval modulation patterns, Turk. J. Elec. Eng. Comp. Sci., 24: 3078 – 3090. Doi: 10.3906/elk-1405-152.
- Hakimi, S., Hodtani G., A., 2018. Generalized maximum correntropy detector for non-Gaussian environments, Int. J. Adapt. Control Signal Process., 32. 1: 83 – 97. Doi: 10.1002/acs.2827
- Hao, C., Orlando, D., Liu, J., Yin, C. 2022. Advances in Adaptive Radar Detection and Range Estimation, 1st Ed., Springer, Singapore, 386 pp.
- Huang, X., Zhang, L., Chen, Z., Zhao, R. 2021. Robust detection and motion parameter estimation for weak maneuvering target in the alpha-stable noise environment, Digit. Signal Process., 108: 102885. Doi: 10.1016/j.dsp.2020.102885.
- Johnson, D., H., 1996. Optimal linear detectors for additive noise channels, IEEE Trans. Signal Process., 44. 12: 3079-3084. Doi: 10.1109/78.553481.
- Kay, S. M. 1998. Fundamentals of Statistical Signal Processing – Detection Theory, 1st Ed., Prentice Hall, Pearson Education, Inc. Upper Saddle River, USA, 576 pp.
- Kuruoglu, E. E. 2001. Density parameter estimation of skewed alpha-stable distributions, IEEE Trans. Signal Process., 49. 10: 2192 – 2201. Doi: 10.1109/78.950775.
- Li, C., Niu, Y., Yu, M., Li, Y., Wang, L., Pan, X., 2020. Pulse train detection algorithm based on edge enhancement, Proc. ICWSN Conf., p. 30-34, New York. Doi: 10.1145/3411201.3411202.
- Liu, X., Fan, X., Su, S. 2019. Adaptive pulse edge detection algorithm based on short-time Fourier transforms and difference of box filter, J. Appl. Remote Sens., 13. 2: 024502. Doi: 10.1117/1.JRS.13.024502.
- Ma, X., Nikias, C., 1995. Parameter estimation and blind channel identification in impulsive signal environments, IEEE Trans. Signal Process., 43. 12: 2884 – 2897. Doi:10.1109/78.476432
- Nikias, C. L., Shao, M. 1995. Signal Processing with Alpha-stable Distributions and Applications, 1st Ed., Wiley Interscience, New York, 184 pp.
- Ranney, K., Tom, K., Tadas, D., Tesny, N., Magill, A., Diehl, W., 2021. An efficient pulse detector and pulse width estimator for waveform characterization, Proc. Radar Sensor Tech. XXV, 117421E. Doi: 10.1117/12.2586969.
- Ranney, K. I., Tom, K., Tadas, D., Tesny, N., Magill, A., Diehl, W., 2022. Magnitude-based pulse width estimation via efficient edge detection. J. Appl. Remote Sens., 16. 1: 016509. Doi: 10.1117/1.JRS.16.016509.
- Saleh, T. S., Marsland, I., El-Tanany, M., 2012. Suboptimal detectors for alpha-stable noise: Simplifying design and improving performance, IEEE Trans. Commun., 60.10: 2982 – 2989. Doi: 10.1109/TCOMM.2012.071812.100789.
- Samorodnitsky, G., Taqqu, M., S., 1994. Stable Non-Gaussian Random Processes, 1st Ed., Chapmand & Hall / CRC, New York, 632 pp.
- Sun, B., Xu, J., Hong, W., Li, X., 2021. A novel detection algorithm for radar signal under non-Gaussian clutter, Proc. DSIT, p. 28-31, Shangai. Doi: 10.1145/3478905.3478911.
- Sureka, G., Kiasaleh, K., 2013. Sub-Optimum receiver architecture for AWGN channel with symmetric alpha-stable interference, IEEE Trans. Commun., 61.5: 1926 – 1935. Doi: 10.1109/TCOMM.2013.022713.120490.
- Tsihrintzis, G., Nikias, C., 1996. Fast estimation of the parameters of alpha-stable impulsive interference, IEEE Trans. Signal Process. 44. 6: 1492–1503. Doi: 10.1109/78.506614.
- Tsihrintzis, G., Nikias, C., 1997. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data, IEE Proc. Radar Son. Nav., 144. 1: 29-37. Doi: 10.1049/ip-rsn:19970933.
- Wiley, R. G., 2006. ELINT: The Interception and Analysis of Radar Signals, 1st Ed., Artech House, Boston, USA, 451 pp.
- Win, M., Z., Pinto, P., C., Shepp, L., A., 2009. A Mathematical theory of network interference and its applications, Proc. IEEE, 97. 2: 205-230. Doi: 10.1109/JPROC.2008.2008764.