Araştırma Makalesi
BibTex RIS Kaynak Göster

Küresel Spiral Aracılığıyla Güneşin Görünürdeki Hareketinin Yorumlanması

Yıl 2023, Cilt: 13 Sayı: 2, 248 - 254, 29.12.2023

Öz

Bu makale, Güneş’in, günlük ve yıllık görünürdeki hareketlerinin birleşimi ile, kürenin sınırlı bir kesitinde bir spiral çizdiğini göstermektedir. Eğriyi oluşturan dönme operatörü bir kuaterniyon tarafından üretilmiştir. Kuaterniyon bileşenlerinin, Güneş’in günlük hareketine ne şekilde karşılık geldikleri gösterilmiştir. Bunun için öncelikle kuterniyonlar yardımıyla küresel spiralin formülü elde edilmiştir. Küresel spiralin, bir kürenin meridyeni boyunca sabit ω açısal hızıyla hareket ederken aynı zamanda, c > 2 olmak üzere, kutup ekseni etrafında cω açısal hızıyla dönen bir P noktasının yeri olduğunu göz önünde bulundurarak, her dönme hareketi için bir kuaterniyon tanımlanmıştır. Bu kuaterniyonların yönleri birbirleriyle 90° açı oluşturur. Bu açı 23° 27’ olsaydı, oluşacak eğri Güneş’in görünürdeki hareketiyle çakışırdı. Bu kuaterniyonların çarpımı, bu eğriyi oluşturan, dönme operatorünü üreten kuaterniyonu verir. Zaman birimine dönüştürülen kuaterniyonun dönüş açısı, Güneş’in bir noktadan diğerine hareket etmesi için gereken süreyi verir. Küçük açılar için dönme ekseni, ekvator düzleminin ekseni ile aynıdır. Bu çalışmanın önemi iki yonlüdür; Astronomi bilimine, Güneş’in görünürdeki hareketinin yorumlanmasında yeni bir bakış açısı kazandırıyor olması, ve aynı zamanda kuaterniyonların kullanımının, bilimin diğer alanlarına getirdiği kolaylığa önemli bir örnek sunmasıdır.

Kaynakça

  • Altman, SL. 1986. Quaternions and Double Groups. Oxford Science Publications. Delphenich, DH. 2012. The representation of physical motions by various types of quaternions. https:// doi.org/10.48550/arXiv.1205.4440
  • Dong, D., Du, P., Zhuoyue, L. 2020. Understanding Quaternions. Mathematics Research Developments, Nova Science Publisher, Inc.
  • Fisher, RC., Ziebur, AD. 1965. Calculus and Analytic Geometry. Prentice-Hall.
  • Griffin, S. 2017. Quaternions: Theory and Applications. Mathematics Research Developments, Nova Science Publisher, Inc.
  • Güçler D., 2023. Quaternions on the Apparent Movement of the Sun According to Venus. International Geometry Symposium in Memory of Prof Erdoğan ESİN, s. 32-33, Ankara.
  • Güçler D., 2023. The use of Quaternions in the Calculation of the Sun’s Apparent Movement According to Mercury and its Comparison with the Sun’ Apparent Movement According to Earth. 5th International Conference of Natural Sciences and Mathematics - University of Tetova, s. 635 , Tetova, North Macedonia.
  • Güçler, D., Ekmekci, FN. 2022. The Interpretation of the Apparent Movement of the Sun Through the Spherical Spiral. 19. International Geometry Symposium, s. 51, Edirne.
  • Güçler, D., Ekmekci, FN., Yaylı Y., Helvacı, M. 2022. Obtaining the Parametric Equation of the Curve of the Sun’s Apparent Movement by using Quaternions. Universal Journal of Mathematics and Applications, 5 (2): 42-50.
  • Hacısalihoğlu, HH. 1983. Hareket Geometrisi ve Kuaterniyonlar Teorisi. Ankara.
  • Karaali, S. 1985. Genel Astronomi I. İstanbul.
  • Kızılırmak, A. 1977. Küresel Gökbilimi. Bornova, İzmir.
  • Kuipers, JB. 1975. Object Tracking and Orientation Determination Means, System, and Process. U.S. Patent 3,868,565, February 25.
  • Kuipers, JB. 1988. Methods and Apparatus for Determining Remote Object Orientation and Position. U.S. Patent 4,742,356, May.
  • Kuipers, JB. 1998. Quaternions and Rotation Sequences. Princeton, New Jersey.
  • Kummer, M. 1996. Reduction in Rotating Kepler Problem and Related Topics. Contemporary Mathematics, 198:155-180.
  • Lowenstein, JH. 2012. Hamiltonian Dynamics. Cambridge University Press.
  • Motz, L., Duveen, A. 1966. Essentials of Astronomy. London.
  • Smart, WM. 2013. Celestial Mechanics. Literary Licensing.
  • Todhunter, MA., Leathem, JG. 1960. Spherical Trigonometry. London.
  • Voronston, V., Rabbitt, PM. 1969. Astronomical Problems. London.
  • Woolard, EW., Clemence, GM. 1966. Spherical Astronomy. New York.

The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral

Yıl 2023, Cilt: 13 Sayı: 2, 248 - 254, 29.12.2023

Öz

This paper shows that the apparent motion of the Sun traces a spherical spiral in a limited section of the sphere. The rotation operator that produces the curve is in turn produced by a quaternion. The way the components of the quaternion correspond to the daily apparent motion of the Sun is shown. To achieve this, first, the spherical spiral formula is obtained using quaternions. It is known that the spherical spiral is a locus of a point P moving at constant angular speed ω along the meridian of a sphere while also rotating at constant angular speed cω around the polar axis where c > 2. Therefore, two rotations occur at the same time, and for each rotation, a quaternion can be defined. The directions of these quaternions form a 90° angle with each other. In this paper, it is shown that if this angle was 23° 27' then the curve that would form would coincide with the apparent motion of the Sun. The product of these quaternions gives the quaternion which produces the rotation operator that forms this curve. Afterward, it is shown that the quaternion rotation angle converted in time units displays the time the Sun needs to move from one point to another. On the other hand, the rotational axis for small angles is the same as the axis of the equatorial plane. The importance of this work is twofold: it gives the science of astronomy a new perspective regarding the interpretation of the apparent motion of the Sun, and at the same time it is an important example of a work that shows the convenience that the use of quaternions brings to other fields of science.

Kaynakça

  • Altman, SL. 1986. Quaternions and Double Groups. Oxford Science Publications. Delphenich, DH. 2012. The representation of physical motions by various types of quaternions. https:// doi.org/10.48550/arXiv.1205.4440
  • Dong, D., Du, P., Zhuoyue, L. 2020. Understanding Quaternions. Mathematics Research Developments, Nova Science Publisher, Inc.
  • Fisher, RC., Ziebur, AD. 1965. Calculus and Analytic Geometry. Prentice-Hall.
  • Griffin, S. 2017. Quaternions: Theory and Applications. Mathematics Research Developments, Nova Science Publisher, Inc.
  • Güçler D., 2023. Quaternions on the Apparent Movement of the Sun According to Venus. International Geometry Symposium in Memory of Prof Erdoğan ESİN, s. 32-33, Ankara.
  • Güçler D., 2023. The use of Quaternions in the Calculation of the Sun’s Apparent Movement According to Mercury and its Comparison with the Sun’ Apparent Movement According to Earth. 5th International Conference of Natural Sciences and Mathematics - University of Tetova, s. 635 , Tetova, North Macedonia.
  • Güçler, D., Ekmekci, FN. 2022. The Interpretation of the Apparent Movement of the Sun Through the Spherical Spiral. 19. International Geometry Symposium, s. 51, Edirne.
  • Güçler, D., Ekmekci, FN., Yaylı Y., Helvacı, M. 2022. Obtaining the Parametric Equation of the Curve of the Sun’s Apparent Movement by using Quaternions. Universal Journal of Mathematics and Applications, 5 (2): 42-50.
  • Hacısalihoğlu, HH. 1983. Hareket Geometrisi ve Kuaterniyonlar Teorisi. Ankara.
  • Karaali, S. 1985. Genel Astronomi I. İstanbul.
  • Kızılırmak, A. 1977. Küresel Gökbilimi. Bornova, İzmir.
  • Kuipers, JB. 1975. Object Tracking and Orientation Determination Means, System, and Process. U.S. Patent 3,868,565, February 25.
  • Kuipers, JB. 1988. Methods and Apparatus for Determining Remote Object Orientation and Position. U.S. Patent 4,742,356, May.
  • Kuipers, JB. 1998. Quaternions and Rotation Sequences. Princeton, New Jersey.
  • Kummer, M. 1996. Reduction in Rotating Kepler Problem and Related Topics. Contemporary Mathematics, 198:155-180.
  • Lowenstein, JH. 2012. Hamiltonian Dynamics. Cambridge University Press.
  • Motz, L., Duveen, A. 1966. Essentials of Astronomy. London.
  • Smart, WM. 2013. Celestial Mechanics. Literary Licensing.
  • Todhunter, MA., Leathem, JG. 1960. Spherical Trigonometry. London.
  • Voronston, V., Rabbitt, PM. 1969. Astronomical Problems. London.
  • Woolard, EW., Clemence, GM. 1966. Spherical Astronomy. New York.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Deniz Güçler 0000-0003-0376-0294

Nejat Ekmekçi 0000-0003-1246-2395

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Güçler, D., & Ekmekçi, N. (2023). The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral. Karaelmas Fen Ve Mühendislik Dergisi, 13(2), 248-254. https://doi.org/10.7212/karaelmasfen.1282168
AMA Güçler D, Ekmekçi N. The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2023;13(2):248-254. doi:10.7212/karaelmasfen.1282168
Chicago Güçler, Deniz, ve Nejat Ekmekçi. “The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral”. Karaelmas Fen Ve Mühendislik Dergisi 13, sy. 2 (Aralık 2023): 248-54. https://doi.org/10.7212/karaelmasfen.1282168.
EndNote Güçler D, Ekmekçi N (01 Aralık 2023) The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral. Karaelmas Fen ve Mühendislik Dergisi 13 2 248–254.
IEEE D. Güçler ve N. Ekmekçi, “The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral”, Karaelmas Fen ve Mühendislik Dergisi, c. 13, sy. 2, ss. 248–254, 2023, doi: 10.7212/karaelmasfen.1282168.
ISNAD Güçler, Deniz - Ekmekçi, Nejat. “The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral”. Karaelmas Fen ve Mühendislik Dergisi 13/2 (Aralık 2023), 248-254. https://doi.org/10.7212/karaelmasfen.1282168.
JAMA Güçler D, Ekmekçi N. The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:248–254.
MLA Güçler, Deniz ve Nejat Ekmekçi. “The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral”. Karaelmas Fen Ve Mühendislik Dergisi, c. 13, sy. 2, 2023, ss. 248-54, doi:10.7212/karaelmasfen.1282168.
Vancouver Güçler D, Ekmekçi N. The Interpretation of the Apparent Motion of the Sun Through the Spherical Spiral. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(2):248-54.