Araştırma Makalesi
BibTex RIS Kaynak Göster

COVID-19 Şiddeti Ve Mortalitesinin Kan Parametrelerinden Kolektif Öğrenme Yöntemleri İle Tespiti

Yıl 2023, Cilt: 13 Sayı: 2, 316 - 328, 29.12.2023

Öz

COVID-19, yüksek yayılım hızına ve Akut Solunum Sıkıntısı Sendromuna (ARDS) neden bir pandemidir. Enfekte bireylerde gelişen şiddetli pnömoni, çok fazla hastanın Yoğun Bakım Ünitesine (ICU) kabul edilmesine neden olmuştur. Bu da, sağlık sistemlerinde kapasitelerin aşılarak benzeri görülmemiş bir baskı meydana getirmiştir. Sağlık sistemlerinin aktif kalabilmesi ve ICU’ya yatması gereken hastaların durumlarının kritikleşmemesi için bu hastalığın prognozunun belirlenmesi oldukça önemlidir. Bu çalışmada, ICU’ya kabul edilen (COVID-19 SEVERITY ) ve COVID-19 nedeni ile ölen (COVID-19 MORTALITY ) hastaların bilgilerini içeren veri setleri, Makine Öğrenmesi (ML) yöntemleri kullanılarak COVID-19 prognoz tespiti yapılmıştır. Veri setlerinde bulunan eksik veriler K-En Yakın Komşu (KNN) ile tamamlanmış ve Min-Max normalizasyonu yapılmıştır. Veri setleri, eğitim ve test setleri olarak bölünmüş ve veriler Sentetik Azınlık Aşırı Örnekleme Tekniği (SMOTE) ile dengelenmiştir. Ardından, Kolektif Öğrenme (EL) yöntemleri kullanılarak sınıflandırma gerçekleştirilmiştir. COVID-19 SEVERITY ve COVID-19 MORTALITY için Adaboost sınıflandırıcısı ile sırasıyla %89.54 ve %97.25 başarı elde edilmiştir. ML yöntemleri ile COVID-19 prognozunun başarılı ve hızlı bir şekilde tespit edilmesi, ICU’yu daha verimli kullanmaya ve sağlık sistemlerinin üzerindeki baskıyı hafifletmeye yardımcı olacaktır.

Kaynakça

  • Abeel,T., Van de Peer, Y., Saeys Y. 2009. Toward a gold standard for promoter prediction evaluation. Bioinformatics, 25(12): 313–320. Doi: 10.1093/bioinformatics/btp191
  • Alabbad, D.A., Almuhaideb, A.M., Alsunaidi, S.J., Alqudaihi, K.S. 2022. Machine learning model for predicting the length of stay in the intensive care unit for Covid-19 patients in the eastern province of Saudi Arabia. Informatics in Medicine Unlocked, 30:100937. Doi: 10.1016/j.imu.2022.100937
  • Anwar, H., Qamar, U., Muzaffar Qureshi, A.W. 2014. Global optimization ensemble model for classification methods. Sci. World J., 2014:313164. Doi: 10.1155/2014/313164
  • Asch, D.A., Sheils, N.E., Islam, M.N., Chen, Y., Werner, R.M., Buresh, J., Doshi, J.A. 2021. Variation in US Hospital Mortality Rates for Patients Admitted with COVID-19 during the First 6 Months of the Pandemic. JAMA Intern. Med., 181(4):471–478. Doi: 10.1001/jamainternmed.2020.8193
  • Bishop, C. M. 2006. Pattern recognition and machine learning (Information science and statistics). Springer-Verlag New York, Inc. Breiman L. 1996. Bagging predictors. Machine Learning. 24:123- 140. Doi: ttps://doi.org/10.1007/BF00058655
  • Breiman L. 2001. Random forests. Machine Learning. 45:5-32. Doi: 10.1023/A:1010933404324
  • Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., Cabitza, F. 2020. Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study. Journal of Medical Systems, 44(135). Doi: 10.1007/ s10916-020-01597-4
  • Cabitza, F., Campagner, A., Ferrari, D., Di Resta, C., Ceriotti, D., Sabetta, E., Colombini, A., … Carobene, A. 2021. Development evaluation and validation of machine learning models for covid-19 detection based on routine blood tests. Clinical Chemistry and Laboratory Medicine (CCLM), 59(2):421-431. Doi: 10.1515/cclm-2020-1294
  • Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. 2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16(1):321-357. Doi: 10.1613/jair.953
  • Chen, S.G., Chen, J.Y., Yang, Y.P., Chien, C.S., Wang, M.L., Lina, L.T. 2020. Use of radiographic features in covid-19 diagnosis: Challenges and perspectives. Journal of the Chinese Medical Association, 83(7):644-647. Doi: 10.1097/ JCMA.0000000000000336
  • Dai, W., Li, D., Tang, D., Wang, H., Peng, Y. 2022. Deep learning approach for defective spot welds classification using small and class-imbalanced datasets. Neurocomputing, 477(8):46-60. Doi: 10.1016/j.neucom.2022.01.004
  • Dey, N., Mishra R., Fong S.J., Santosh K.C., Tan S., Crespo R.G. 2020. COVID-19: Psychological and psychosocial impact, fear, and passion. Digit. Gov.: Res. Pract., 1, 1–4. Doi: 10.1145/3428088
  • Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q. 2020. A survey on ensemble learning. Front. Comput. Sci., 14(2):241-258. Doi: 10.1007/s11704-019-8208-z
  • Douzas, G., Bação, F., Last, F. 2018. Improving imbalanced learning through a heuristic oversampling method based on k‐means and SMOTE. Inform Sci., 465:1‐20. Doi: 10.1016/j. ins.2018.06.056
  • Elshennawy, N.M., Ibrahim, D.M., Sarhan, A.M., Arafa, M. 2022. Deep-Risk: Deep Learning-Based Mortality Risk Predictive Models for COVID-19. Diagnostics (Basel), 12(8):1847. Doi: 10.3390/diagnostics12081847
  • Erol, G., Uzbaş, B., Yücelbaş, C., Yücelbaş, Ş. 2022. Analyzıng The Effect Of Data Pre-Processing Techniques Using Machine Learning Algorithms On The Diagnosis Of COVID-19. Concurrency and Computation-Practice & Experience, 34(28). Doi: 10.1002/cpe.7393
  • Erol Doğan, G., Uzbaşa, B. 2023. Diagnosis of COVID-19 from blood parameters using convolutional neural network. Soft Computing, 27(15):10555–10570. Doi: 10.1007/s00500-023- 08508-y
  • Famiglini, L., Bini, G., Carobene, A., Campagner, A., Cabitza, F. 2021. Prediction of ICU admission for COVID-19 patients: a Machine Learning approach based on Complete Blood Count data. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). Doi: 10.1109/ CBMS52027.2021.00065
  • Feigin, E., Levinson, T., Wasserman, A., Shenhar-Tsarfaty, S. 2022. Age-Dependent Biomarkers for Prediction of InHospital Mortality in COVID-19 Patients. J. Clin. Med., 11(10):2682. Doi: 10.3390/jcm11102682
  • Fernandez, A., Garcia, S., Herrera, F., Chawla, N. 2018. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61(1):863-905. Doi: 10.1613/ jair.1.11192
  • Fong, S., Li G., Dey N., Crespo R.G., Herrera-Viedma E. 2020. Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak. Int. J. Interact. Multimedia Artif. Intell., 6(1):1–10. Doi: 10.9781/ ijimai.2020.02.002
  • Freud, Y. & Schapire, R.E. 1999. A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5):771-780.
  • Ghani, A.C., Donnelly, C.A., Cox, D.R., Griffin, J.T., Fraser, C., Lam, T.H., Ho, L.M., … Leung, G.M. 2005. Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am J Epidemiol, 162(5):479–486. Doi: 10.1093/aje/kwi230
  • Göreke, V., Sarı V., Kockanat S. 2021. A novel classifier architecture based on deep neural network for COVID-19 detection using laboratory findings. Applied Soft Computing, 106(1):107329. Doi: 10.1016/j.asoc.2021.107329
  • Grasselli, G., Zangrillo, A., Zanella, A., Antonelli M., Cabrini, L., Castelli, A., Cereda, D., … COVID-19 Lombardy ICU Network, 2020. Baseline characteristics and outcomes of 1591 patients infected with sars-cov-2 admitted to icus of the lombardy region, italy. JAMA, 323(16):1574–1581. Doi: 10.1001/jama.2020.5394
  • Hajian-Tilaki, K. 2013. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian Journal of Internal Medicinen, 4(2): 627–635.
  • Hu, Z., Melton, G.B., Arsoniadis, E.G., Wang, Y., Kwaan, M.R., Simon, G.J. 2017. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record, 68: 112–120. Doi: 10.1016/j. jbi.2017.03.009
  • Huang, H., Bader, J.S. 2009. Precision and recallestimatesfortwo hybrid screens. Bioinformatics, 25(3):372–378. Doi: 10.1093/ bioinformatics/btn640
  • Hulley, S.B., Cummings, S.R., Browner, W.S., Grady, D., Hearst, N., Newman, T.B. 2001. Studies of the Accuracy of Tests. Designing Clinical Research An Epidemiologic Approach. Second Edition. Lippincott Williams & Wilkins, 181-2.
  • Idri, A., Abnane, I., Abran, A. 2016. Missing data techniques in analogy-based software development effort estimation. The Journal of Systems and Software, 117, 595–611. Doi: 10.1016/j.jss.2016.04.058
  • Japkowicz, N., Shah, M. 2011. Evaluating Learning Algorithms, Cambridge University Press. Doi: 10.1017/ CBO9780511921803
  • Kong, Y., Han, J., Wu, X., Zeng, H., Liu, J., Zhang, H. 2020. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care, 24(1):373. Doi: 10.1186/s13054-020- 03079-y
  • Kumar, Y., Koul, A., Singla, R., Ijaz, M.F. 2023. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Springer Nature, 14(7):8459–8486. Doi: 10.1007/s12652-021-03612-z
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Peng Z. 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11):1061–9. Doi: 10.1001/ jama.2020.1585
  • World Health Organization (WHO) 2020. Health topics, coronavirus. https://www.who.int/health-topics/ coronavirus#tab=tab _ 3
  • World Health Organization (WHO) 2022. WHO Coronavirus (COVID-19) Dashboard: https://covid19.who.int/
  • Willyard, C. 2020. Coronavirus blood-clot mystery intensifies. Nature, 581(7808):250. Doi: 10.1038/d41586-020-01403-8
  • Wynants, L., Van Calster, B., Collins, G.S., Riley, R.D., Heinze, G., Schuit, E., Bonten, M.M.J., … van Smeden, M. 2020. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 7(369):m1328. Doi: 10.1136/bmj.m1328
  • Mahaney, M.C., Brugnara, C., Lease, L.R., Platt, O.S. 2005. Genetic influences on peripheral blood cell counts: a study in baboons, 106(4): 1210–1214. Doi: 10.1182/ blood-2004-12-4863
  • Metz, C.E. 1978. Basic principles of ROC analysis. Semin Nucl Med., 8(4):283-98. Doi: 10.1016/s0001-2998(78)80014-2
  • Mohammed, A., Kora, R. 2023. A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. Journal of King Saud University - Computer and Information Sciences, 35(2):757-774. Doi: 10.1016/j.jksuci.2023.01.014
  • Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., Kazemi-Arpanahi, H. 2022. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 22(1). Doi: 10.1186/s12911-021-01742-0
  • Moore, J.B., June, C.H. 2020. Cytokine release syndrome in severe COVID-19. Science, 368(6490):473–474. Doi: 10.1126/science.abb8925
  • Nagant, C., Ponthieuxa, F:, Smet, J., Dauby, N. 2020. A score combining early detection of cytokines accurately predicts COVID-19 severity and intensive care unit transfer. International Journal of Infectious Diseases, 101:342-345. Doi: 10.1016/j.ijid.2020.10.003
  • Pasquier, G., Bounhiol, A., Gangneux, F.R., Zahar, J.R., Gangneux, J.P., Novara, A., Bougnoux, M.E., Dannaoui, E. 2021. A review of significance of Aspergillus detection in airways of ICU COVID-19 patients. Mycoses. 64(9):980-988. Doi: 10.1111/myc.13341.
  • Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A. (2021). Forecasting the Spread of COVID-19 and ICU Requirements, International Journal of Online and Biomedical Engineering (iJOE) 17(05):81. Doi: 10.3991/ijoe. v17i05.20009
  • Prusa, J., Khoshgoftaar, T.M., Dittman, D.J. 2015. Using ensemble learners to improve classifier performance on tweet sentiment data. 2015 IEEE International Conference on Information Reuse and Integration, 252-257. Doi: 10.1109/ IRI.2015.49
  • Rahman, M. and Davis, D.N. 2013. Addressing the Class Imbalance Problem in Medical Datasets, 3(1): 224. Doi: 10.7763/IJMLC.2013.V3.307
  • Rodriguez-Nava, G., Yanez-Bello, M.A., Trelles-Garcia, D.P., Chung, C.W., Friedman, H.J., Hines, D.W. 2020. Performance of the quick covid-19 severity index and the brescia-covid respiratory severity scale in hospitalized patients with covid-19 in a community hospital setting. International Journal of Infectious Diseases, 102:571-576. https://doi. org/10.1016/j.ijid.2020.11.003
  • Sagi, O., Rokach, L. 2018. Ensemble learning: A survey Wiley Interdiscip. Rev.: Data Min. Knowledge Discov., 8(4):e1249. Doi: 10.1002/widm.1249
  • Shahzad, R.K., Lavesson, N. 2013. Comparative analysis of voting schemes for ensemble-based malware detection. J. Wireless Mobile Netw., Ubiquitous Comput. Dependable Appl., 4 (1):98-117.
  • Strålin, K., Wahlström, E., Walther, S., Bennet-Bark, A.M., Heurgren, M., Lindén, T., Holm, J., Hanberger, H. 2021. Mortality Trends among Hospitalised COVID-19 Patients in Sweden: A Nationwide Observational Cohort Study. Lancet Reg. Health Eur., 4, 100054. Doi: 10.1016/j. lanepe.2021.100054
  • Strålin, K., Wahlström, E., Walther, S., Bennet-Bark, A.M., Heurgren, M., Lindén, T., Holm, J., Hanberger, H. 2022. Mortality in Hospitalized COVID-19 Patients Was Associated with the COVID-19 Admission Rate during the First Year of the Pandemic in Sweden. Infect. Dis., 54, 145– 151. Doi: 10.1080/23744235.2021.1983643
  • Yang, H.S., Hou, Y., Vasovic, L.V., Steel, P.A., Chadburn, A., Racine-Brzostek, A.E., Velu, P., … Wang, F. 2020. Routine laboratory blood tests predict sars-cov-2 infection using machine learning. Clinical chemistry, 66(11):1396-1404. Doi: 10.1093/clinchem/hvaa200

Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods

Yıl 2023, Cilt: 13 Sayı: 2, 316 - 328, 29.12.2023

Öz

COVID-19 is a pandemic that causes a high rate of spread and Acute Respiratory Distress Syndrome (ARDS). Severe pneumonia in infected individuals has resulted in too many patients being admitted to the Intensive Care Unit (ICU). This has placed unprecedented pressure on health systems by exceeding capacities. It is essential to detect the prognosis of this disease so that the health systems can remain active and the conditions of the patients who need to be hospitalized in the ICU do not become critical. In this study, COVID-19 prognosis was detected by using ICU admission (COVID-19 SEVERITY) and COVID-19 related death (COVID- 19 MORTALITY) datasets with Machine Learning (ML) methods. The missing data of the datasets were filled with K-Nearest Neighbor (KNN), and Min-Max normalization was performed. Datasets were divided three times into training and test sets, and the data were balanced with the Synthetic Minority Oversampling Technique (SMOTE). Then, classification was carried out using Ensemble Learning (EL) methods. For COVID-19 SEVERITY and COVID-19 MORTALITY, 89.54% and 97.25% accuracy were achieved with the Adaboost classifier, respectively. Successful and rapid COVID-19 prognosis detection with ML methods will help to use the ICU more efficiently and relieve the pressure on health systems.

Kaynakça

  • Abeel,T., Van de Peer, Y., Saeys Y. 2009. Toward a gold standard for promoter prediction evaluation. Bioinformatics, 25(12): 313–320. Doi: 10.1093/bioinformatics/btp191
  • Alabbad, D.A., Almuhaideb, A.M., Alsunaidi, S.J., Alqudaihi, K.S. 2022. Machine learning model for predicting the length of stay in the intensive care unit for Covid-19 patients in the eastern province of Saudi Arabia. Informatics in Medicine Unlocked, 30:100937. Doi: 10.1016/j.imu.2022.100937
  • Anwar, H., Qamar, U., Muzaffar Qureshi, A.W. 2014. Global optimization ensemble model for classification methods. Sci. World J., 2014:313164. Doi: 10.1155/2014/313164
  • Asch, D.A., Sheils, N.E., Islam, M.N., Chen, Y., Werner, R.M., Buresh, J., Doshi, J.A. 2021. Variation in US Hospital Mortality Rates for Patients Admitted with COVID-19 during the First 6 Months of the Pandemic. JAMA Intern. Med., 181(4):471–478. Doi: 10.1001/jamainternmed.2020.8193
  • Bishop, C. M. 2006. Pattern recognition and machine learning (Information science and statistics). Springer-Verlag New York, Inc. Breiman L. 1996. Bagging predictors. Machine Learning. 24:123- 140. Doi: ttps://doi.org/10.1007/BF00058655
  • Breiman L. 2001. Random forests. Machine Learning. 45:5-32. Doi: 10.1023/A:1010933404324
  • Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., Cabitza, F. 2020. Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study. Journal of Medical Systems, 44(135). Doi: 10.1007/ s10916-020-01597-4
  • Cabitza, F., Campagner, A., Ferrari, D., Di Resta, C., Ceriotti, D., Sabetta, E., Colombini, A., … Carobene, A. 2021. Development evaluation and validation of machine learning models for covid-19 detection based on routine blood tests. Clinical Chemistry and Laboratory Medicine (CCLM), 59(2):421-431. Doi: 10.1515/cclm-2020-1294
  • Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. 2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16(1):321-357. Doi: 10.1613/jair.953
  • Chen, S.G., Chen, J.Y., Yang, Y.P., Chien, C.S., Wang, M.L., Lina, L.T. 2020. Use of radiographic features in covid-19 diagnosis: Challenges and perspectives. Journal of the Chinese Medical Association, 83(7):644-647. Doi: 10.1097/ JCMA.0000000000000336
  • Dai, W., Li, D., Tang, D., Wang, H., Peng, Y. 2022. Deep learning approach for defective spot welds classification using small and class-imbalanced datasets. Neurocomputing, 477(8):46-60. Doi: 10.1016/j.neucom.2022.01.004
  • Dey, N., Mishra R., Fong S.J., Santosh K.C., Tan S., Crespo R.G. 2020. COVID-19: Psychological and psychosocial impact, fear, and passion. Digit. Gov.: Res. Pract., 1, 1–4. Doi: 10.1145/3428088
  • Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q. 2020. A survey on ensemble learning. Front. Comput. Sci., 14(2):241-258. Doi: 10.1007/s11704-019-8208-z
  • Douzas, G., Bação, F., Last, F. 2018. Improving imbalanced learning through a heuristic oversampling method based on k‐means and SMOTE. Inform Sci., 465:1‐20. Doi: 10.1016/j. ins.2018.06.056
  • Elshennawy, N.M., Ibrahim, D.M., Sarhan, A.M., Arafa, M. 2022. Deep-Risk: Deep Learning-Based Mortality Risk Predictive Models for COVID-19. Diagnostics (Basel), 12(8):1847. Doi: 10.3390/diagnostics12081847
  • Erol, G., Uzbaş, B., Yücelbaş, C., Yücelbaş, Ş. 2022. Analyzıng The Effect Of Data Pre-Processing Techniques Using Machine Learning Algorithms On The Diagnosis Of COVID-19. Concurrency and Computation-Practice & Experience, 34(28). Doi: 10.1002/cpe.7393
  • Erol Doğan, G., Uzbaşa, B. 2023. Diagnosis of COVID-19 from blood parameters using convolutional neural network. Soft Computing, 27(15):10555–10570. Doi: 10.1007/s00500-023- 08508-y
  • Famiglini, L., Bini, G., Carobene, A., Campagner, A., Cabitza, F. 2021. Prediction of ICU admission for COVID-19 patients: a Machine Learning approach based on Complete Blood Count data. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). Doi: 10.1109/ CBMS52027.2021.00065
  • Feigin, E., Levinson, T., Wasserman, A., Shenhar-Tsarfaty, S. 2022. Age-Dependent Biomarkers for Prediction of InHospital Mortality in COVID-19 Patients. J. Clin. Med., 11(10):2682. Doi: 10.3390/jcm11102682
  • Fernandez, A., Garcia, S., Herrera, F., Chawla, N. 2018. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61(1):863-905. Doi: 10.1613/ jair.1.11192
  • Fong, S., Li G., Dey N., Crespo R.G., Herrera-Viedma E. 2020. Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak. Int. J. Interact. Multimedia Artif. Intell., 6(1):1–10. Doi: 10.9781/ ijimai.2020.02.002
  • Freud, Y. & Schapire, R.E. 1999. A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5):771-780.
  • Ghani, A.C., Donnelly, C.A., Cox, D.R., Griffin, J.T., Fraser, C., Lam, T.H., Ho, L.M., … Leung, G.M. 2005. Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am J Epidemiol, 162(5):479–486. Doi: 10.1093/aje/kwi230
  • Göreke, V., Sarı V., Kockanat S. 2021. A novel classifier architecture based on deep neural network for COVID-19 detection using laboratory findings. Applied Soft Computing, 106(1):107329. Doi: 10.1016/j.asoc.2021.107329
  • Grasselli, G., Zangrillo, A., Zanella, A., Antonelli M., Cabrini, L., Castelli, A., Cereda, D., … COVID-19 Lombardy ICU Network, 2020. Baseline characteristics and outcomes of 1591 patients infected with sars-cov-2 admitted to icus of the lombardy region, italy. JAMA, 323(16):1574–1581. Doi: 10.1001/jama.2020.5394
  • Hajian-Tilaki, K. 2013. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian Journal of Internal Medicinen, 4(2): 627–635.
  • Hu, Z., Melton, G.B., Arsoniadis, E.G., Wang, Y., Kwaan, M.R., Simon, G.J. 2017. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record, 68: 112–120. Doi: 10.1016/j. jbi.2017.03.009
  • Huang, H., Bader, J.S. 2009. Precision and recallestimatesfortwo hybrid screens. Bioinformatics, 25(3):372–378. Doi: 10.1093/ bioinformatics/btn640
  • Hulley, S.B., Cummings, S.R., Browner, W.S., Grady, D., Hearst, N., Newman, T.B. 2001. Studies of the Accuracy of Tests. Designing Clinical Research An Epidemiologic Approach. Second Edition. Lippincott Williams & Wilkins, 181-2.
  • Idri, A., Abnane, I., Abran, A. 2016. Missing data techniques in analogy-based software development effort estimation. The Journal of Systems and Software, 117, 595–611. Doi: 10.1016/j.jss.2016.04.058
  • Japkowicz, N., Shah, M. 2011. Evaluating Learning Algorithms, Cambridge University Press. Doi: 10.1017/ CBO9780511921803
  • Kong, Y., Han, J., Wu, X., Zeng, H., Liu, J., Zhang, H. 2020. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care, 24(1):373. Doi: 10.1186/s13054-020- 03079-y
  • Kumar, Y., Koul, A., Singla, R., Ijaz, M.F. 2023. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Springer Nature, 14(7):8459–8486. Doi: 10.1007/s12652-021-03612-z
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Peng Z. 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11):1061–9. Doi: 10.1001/ jama.2020.1585
  • World Health Organization (WHO) 2020. Health topics, coronavirus. https://www.who.int/health-topics/ coronavirus#tab=tab _ 3
  • World Health Organization (WHO) 2022. WHO Coronavirus (COVID-19) Dashboard: https://covid19.who.int/
  • Willyard, C. 2020. Coronavirus blood-clot mystery intensifies. Nature, 581(7808):250. Doi: 10.1038/d41586-020-01403-8
  • Wynants, L., Van Calster, B., Collins, G.S., Riley, R.D., Heinze, G., Schuit, E., Bonten, M.M.J., … van Smeden, M. 2020. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 7(369):m1328. Doi: 10.1136/bmj.m1328
  • Mahaney, M.C., Brugnara, C., Lease, L.R., Platt, O.S. 2005. Genetic influences on peripheral blood cell counts: a study in baboons, 106(4): 1210–1214. Doi: 10.1182/ blood-2004-12-4863
  • Metz, C.E. 1978. Basic principles of ROC analysis. Semin Nucl Med., 8(4):283-98. Doi: 10.1016/s0001-2998(78)80014-2
  • Mohammed, A., Kora, R. 2023. A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. Journal of King Saud University - Computer and Information Sciences, 35(2):757-774. Doi: 10.1016/j.jksuci.2023.01.014
  • Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., Kazemi-Arpanahi, H. 2022. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 22(1). Doi: 10.1186/s12911-021-01742-0
  • Moore, J.B., June, C.H. 2020. Cytokine release syndrome in severe COVID-19. Science, 368(6490):473–474. Doi: 10.1126/science.abb8925
  • Nagant, C., Ponthieuxa, F:, Smet, J., Dauby, N. 2020. A score combining early detection of cytokines accurately predicts COVID-19 severity and intensive care unit transfer. International Journal of Infectious Diseases, 101:342-345. Doi: 10.1016/j.ijid.2020.10.003
  • Pasquier, G., Bounhiol, A., Gangneux, F.R., Zahar, J.R., Gangneux, J.P., Novara, A., Bougnoux, M.E., Dannaoui, E. 2021. A review of significance of Aspergillus detection in airways of ICU COVID-19 patients. Mycoses. 64(9):980-988. Doi: 10.1111/myc.13341.
  • Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A. (2021). Forecasting the Spread of COVID-19 and ICU Requirements, International Journal of Online and Biomedical Engineering (iJOE) 17(05):81. Doi: 10.3991/ijoe. v17i05.20009
  • Prusa, J., Khoshgoftaar, T.M., Dittman, D.J. 2015. Using ensemble learners to improve classifier performance on tweet sentiment data. 2015 IEEE International Conference on Information Reuse and Integration, 252-257. Doi: 10.1109/ IRI.2015.49
  • Rahman, M. and Davis, D.N. 2013. Addressing the Class Imbalance Problem in Medical Datasets, 3(1): 224. Doi: 10.7763/IJMLC.2013.V3.307
  • Rodriguez-Nava, G., Yanez-Bello, M.A., Trelles-Garcia, D.P., Chung, C.W., Friedman, H.J., Hines, D.W. 2020. Performance of the quick covid-19 severity index and the brescia-covid respiratory severity scale in hospitalized patients with covid-19 in a community hospital setting. International Journal of Infectious Diseases, 102:571-576. https://doi. org/10.1016/j.ijid.2020.11.003
  • Sagi, O., Rokach, L. 2018. Ensemble learning: A survey Wiley Interdiscip. Rev.: Data Min. Knowledge Discov., 8(4):e1249. Doi: 10.1002/widm.1249
  • Shahzad, R.K., Lavesson, N. 2013. Comparative analysis of voting schemes for ensemble-based malware detection. J. Wireless Mobile Netw., Ubiquitous Comput. Dependable Appl., 4 (1):98-117.
  • Strålin, K., Wahlström, E., Walther, S., Bennet-Bark, A.M., Heurgren, M., Lindén, T., Holm, J., Hanberger, H. 2021. Mortality Trends among Hospitalised COVID-19 Patients in Sweden: A Nationwide Observational Cohort Study. Lancet Reg. Health Eur., 4, 100054. Doi: 10.1016/j. lanepe.2021.100054
  • Strålin, K., Wahlström, E., Walther, S., Bennet-Bark, A.M., Heurgren, M., Lindén, T., Holm, J., Hanberger, H. 2022. Mortality in Hospitalized COVID-19 Patients Was Associated with the COVID-19 Admission Rate during the First Year of the Pandemic in Sweden. Infect. Dis., 54, 145– 151. Doi: 10.1080/23744235.2021.1983643
  • Yang, H.S., Hou, Y., Vasovic, L.V., Steel, P.A., Chadburn, A., Racine-Brzostek, A.E., Velu, P., … Wang, F. 2020. Routine laboratory blood tests predict sars-cov-2 infection using machine learning. Clinical chemistry, 66(11):1396-1404. Doi: 10.1093/clinchem/hvaa200
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri
Yazarlar

Gizemnur Erol 0000-0001-9347-9775

Betül Uzbaş 0000-0002-0255-5988

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Erol, G., & Uzbaş, B. (2023). Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods. Karaelmas Fen Ve Mühendislik Dergisi, 13(2), 316-328. https://doi.org/10.7212/karaelmasfen.1363912
AMA Erol G, Uzbaş B. Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2023;13(2):316-328. doi:10.7212/karaelmasfen.1363912
Chicago Erol, Gizemnur, ve Betül Uzbaş. “Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods”. Karaelmas Fen Ve Mühendislik Dergisi 13, sy. 2 (Aralık 2023): 316-28. https://doi.org/10.7212/karaelmasfen.1363912.
EndNote Erol G, Uzbaş B (01 Aralık 2023) Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods. Karaelmas Fen ve Mühendislik Dergisi 13 2 316–328.
IEEE G. Erol ve B. Uzbaş, “Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods”, Karaelmas Fen ve Mühendislik Dergisi, c. 13, sy. 2, ss. 316–328, 2023, doi: 10.7212/karaelmasfen.1363912.
ISNAD Erol, Gizemnur - Uzbaş, Betül. “Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods”. Karaelmas Fen ve Mühendislik Dergisi 13/2 (Aralık 2023), 316-328. https://doi.org/10.7212/karaelmasfen.1363912.
JAMA Erol G, Uzbaş B. Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:316–328.
MLA Erol, Gizemnur ve Betül Uzbaş. “Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods”. Karaelmas Fen Ve Mühendislik Dergisi, c. 13, sy. 2, 2023, ss. 316-28, doi:10.7212/karaelmasfen.1363912.
Vancouver Erol G, Uzbaş B. Detection of COVID-19 Severity and Mortality from Blood Parameters by Ensemble Learning Methods. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(2):316-28.