Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Properties of Generalized Jacobsthal-Like Sequences

Yıl 2024, Cilt: 14 Sayı: 2, 92 - 96, 23.07.2024

Öz

In this article, using Jacobsthal and Jacobsthal-Lucas sequences, we define generalized Jacobsthal-Like sequences and investigate their algebraic properties like Binet’s formula, generating functions, Simson formula and summation formula. We also prove some other summation formulas like sum of even and odd indices and alternating sum of generalized Jacobsthal-Like sequences.

Proje Numarası

2

Kaynakça

  • Benjamin, AT., Quinn, JJ. 1999. Recounting Fibonacci and Lucas identities. The College Mathematics Journal, 30(5), 359-366. https://doi.org/10.1080/07468342.1999.11974086
  • Badshah, VH., Teeth, MS., Dar, MM. 2012. Generalized Fibonacci-like sequence and its properties. International Journal of Contemporary Mathematical Sciences, 7(24), 1155-1164.
  • Gupta, Y., Singh, M., Sikhwal, O. 2014. Generalized Fibonacci-like sequence associated with Fibonacci and Lucas sequences. Turkish Journal of Analysis and Number Theory, 2(6), 233-238. https://doi.org/10.12691/tjant-2-6-9
  • Horadam, AF. 1996. Jacobsthal representation numbers. Fibonacci Quarterly, 34(1), 40-54.
  • Harne, S., Singh, Pal, S. 2014. Generalized Fibonacci-Like sequence and Fibonacci Sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235-241. http://dx.doi.org/10.12988/ijcms.2014.4218
  • Lee, JZ., Lee, JS. 1987. Some Properties of Generalization of the Fibonacci Sequences. The Fibonacci Quarterly, (No. 2), 110-117.
  • Natividad, LR. 2016. Notes on Jacobsthal and Jacobsthal-Like Sequences. International Journal of Mathematics Trends and Technology (IJMTT), 34(2), 115-117. https://doi.org/10.14445/22315373/IJMTT-V34P519
  • Pakapongpun, A. 2020. Identities on the product of Jacobsthal-Like and Jacobsthal-Lucas numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 209-215. DOI: 10.7546/nntdm.2020.26.1.209-215
  • Singh, B., Sikhwal, O., Bhatnagar, S. 2010. Fibonacci-Like Sequence and its properties. International Journal of Contemporary Mathematical Sciences, 5(18), 857-868. DOI: 10.12691/tjant-2-4-1.
  • Singh, M., Sikhwal, O., Gupta, Y. 2014. Identities of generalized Fibonacci-Like Sequence. Turkish Journal of Analysis and Number Theory, 2(5), 170-175. DOI: 10.12691/tjant-2-5-3.
  • Soykan, Y., Göcen, M. (2022). Binomial transform of the generalized third order Jacobsthal sequence. Asian-European Journal of Mathematics, 15(12). https://doi.org/10.1142/S1793557122502242
  • Soykan, Y., Taşdemir, E., Okumuş, İ., Göcen, M. 2018. Gaussian generalized Tribonacci numbers. Journal of Progressive Research in Mathematics, 14(2), 2373-2387.

Genelleştirilmiş Jacobsthal-Benzeri Dizilerin Bazı Özellikleri

Yıl 2024, Cilt: 14 Sayı: 2, 92 - 96, 23.07.2024

Öz

Bu makalede Jacobsthal ve Jacobsthal-Lucas dizilerini kullanarak genelleştirilmiş Jacobsthal-Benzeri dizilerini tanımlayıp Binet formülü, üreten fonksiyonlar, Simson formülü ve toplam formülü gibi cebirsel özelliklerini araştırıyoruz. Ayrıca çift ve tek indekslerin toplamı ve genelleştirilmiş Jacobsthal-Benzeri dizilerinin alterne toplamı gibi diğer toplama formüllerini de kanıtlıyoruz.

Proje Numarası

2

Kaynakça

  • Benjamin, AT., Quinn, JJ. 1999. Recounting Fibonacci and Lucas identities. The College Mathematics Journal, 30(5), 359-366. https://doi.org/10.1080/07468342.1999.11974086
  • Badshah, VH., Teeth, MS., Dar, MM. 2012. Generalized Fibonacci-like sequence and its properties. International Journal of Contemporary Mathematical Sciences, 7(24), 1155-1164.
  • Gupta, Y., Singh, M., Sikhwal, O. 2014. Generalized Fibonacci-like sequence associated with Fibonacci and Lucas sequences. Turkish Journal of Analysis and Number Theory, 2(6), 233-238. https://doi.org/10.12691/tjant-2-6-9
  • Horadam, AF. 1996. Jacobsthal representation numbers. Fibonacci Quarterly, 34(1), 40-54.
  • Harne, S., Singh, Pal, S. 2014. Generalized Fibonacci-Like sequence and Fibonacci Sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235-241. http://dx.doi.org/10.12988/ijcms.2014.4218
  • Lee, JZ., Lee, JS. 1987. Some Properties of Generalization of the Fibonacci Sequences. The Fibonacci Quarterly, (No. 2), 110-117.
  • Natividad, LR. 2016. Notes on Jacobsthal and Jacobsthal-Like Sequences. International Journal of Mathematics Trends and Technology (IJMTT), 34(2), 115-117. https://doi.org/10.14445/22315373/IJMTT-V34P519
  • Pakapongpun, A. 2020. Identities on the product of Jacobsthal-Like and Jacobsthal-Lucas numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 209-215. DOI: 10.7546/nntdm.2020.26.1.209-215
  • Singh, B., Sikhwal, O., Bhatnagar, S. 2010. Fibonacci-Like Sequence and its properties. International Journal of Contemporary Mathematical Sciences, 5(18), 857-868. DOI: 10.12691/tjant-2-4-1.
  • Singh, M., Sikhwal, O., Gupta, Y. 2014. Identities of generalized Fibonacci-Like Sequence. Turkish Journal of Analysis and Number Theory, 2(5), 170-175. DOI: 10.12691/tjant-2-5-3.
  • Soykan, Y., Göcen, M. (2022). Binomial transform of the generalized third order Jacobsthal sequence. Asian-European Journal of Mathematics, 15(12). https://doi.org/10.1142/S1793557122502242
  • Soykan, Y., Taşdemir, E., Okumuş, İ., Göcen, M. 2018. Gaussian generalized Tribonacci numbers. Journal of Progressive Research in Mathematics, 14(2), 2373-2387.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Research Article
Yazarlar

Can Murat Dikmen 0000-0002-1837-1139

Kübra Karataş Selam 0000-0002-6490-440X

Proje Numarası 2
Yayımlanma Tarihi 23 Temmuz 2024
Gönderilme Tarihi 27 Şubat 2024
Kabul Tarihi 13 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Dikmen, C. M., & Karataş Selam, K. (2024). Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen Ve Mühendislik Dergisi, 14(2), 92-96. https://doi.org/10.7212/karaelmasfen.1443277
AMA Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. Temmuz 2024;14(2):92-96. doi:10.7212/karaelmasfen.1443277
Chicago Dikmen, Can Murat, ve Kübra Karataş Selam. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen Ve Mühendislik Dergisi 14, sy. 2 (Temmuz 2024): 92-96. https://doi.org/10.7212/karaelmasfen.1443277.
EndNote Dikmen CM, Karataş Selam K (01 Temmuz 2024) Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi 14 2 92–96.
IEEE C. M. Dikmen ve K. Karataş Selam, “Some Properties of Generalized Jacobsthal-Like Sequences”, Karaelmas Fen ve Mühendislik Dergisi, c. 14, sy. 2, ss. 92–96, 2024, doi: 10.7212/karaelmasfen.1443277.
ISNAD Dikmen, Can Murat - Karataş Selam, Kübra. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen ve Mühendislik Dergisi 14/2 (Temmuz 2024), 92-96. https://doi.org/10.7212/karaelmasfen.1443277.
JAMA Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:92–96.
MLA Dikmen, Can Murat ve Kübra Karataş Selam. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen Ve Mühendislik Dergisi, c. 14, sy. 2, 2024, ss. 92-96, doi:10.7212/karaelmasfen.1443277.
Vancouver Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(2):92-6.