Araştırma Makalesi
BibTex RIS Kaynak Göster

Fagus orientalis Yüzeyinin ZnO/TiO2/FAS-17 Bazlı Nanopartiküllerle İşlenmesi

Yıl 2023, Cilt: 23 Sayı: 3, 175 - 185, 06.12.2023
https://doi.org/10.17475/kastorman.1394874

Öz

Çalışmanın amacı: Bu araştırmada, kayın ağacının (Fagus Orientalis) yüzeyi, ahşap endüstrisi tarafından yaygın olarak kullanılan güçlü biyoyapısı nedeniyle bir substrat olarak seçilmiştir. Hizmet ömrünü artırmak amacıyla, ZnO, TiO2 ve FAS-17 nanopartiküller ile fonksiyonelleştirilmiştir.
Materyal ve yöntem: FAS-17 (Trimetoksisilan) ve amonyum hekzaflorotitanat Sigma-Aldrich'ten ve çinko borat Etimine S.A.'dan satın alınmıştır. Metanol, etil alkol, hidroklorik asit, sodyum hidroksit ve çinko oksit TEKKİM tarafından sağlanmıştır. Karakterizasyon yöntemleri arasında FTIR, TG/DTA, XRD, SEM ve EDX yer almıştır. Hidrofobiklik KSV Cam101 kullanılarak su temas açısı ile belirlenmiştir. UV-Vis analizinde Shimadzu UV-160 spektrofotometresi kullanılmış, yüzey pürüzlülüğü Marsurf M 300 cihazı (ISO 4287) ile ölçülmüş ve renk analizi Datacolor Elrepho 450 X spektrometresi (ASTM 2021) ile gerçekleştirilmiştir.
Temel sonuçlar: Ahşabın termal stabilitesi, ZnO/TiO2 nanopartiküllerin hidrotermal olarak yerleştirilmesiyle önemli ölçüde iyileştirilmiştir. Ayrıca, FAS-17 olarak adlandırılan Triethoxy-1H,1H,2H,2H-perfluorodesilsilan (C14H19F13O3Si) kullanılarak etkili bir hidrofobizasyon sağlanmıştır.
Araştırma vurguları: ZnO tabanlı nano biyomimetik akıllı yüzeyin sentezi, ahşap malzemeye hidrofobik bir özellik kazandırmıştır. Lignoselülozik yüzeyin bu yeni fonksiyonel özelliği, hijyenin önemli olduğu her türlü alanda tercih edilmesini sağlayabilir.

Kaynakça

  • Aad, R., Simic, V., Cunff, L. L., Rocha, L., Sallet,V., Sartel, C., Lusson, A., Couteaua, C. & Lerondel, G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives. Nanoscale, 5, 9176-9180.
  • Ali, M. R., Abdullah, U. H., Ashaari, Z., Hamid, N. H., & Hua, L. S. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13(16), 2612.
  • ASTM, Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. (2021).
  • Báder, M., Németh, R., Sandak, J., & Sandak, A. (2020). FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose, 27(12), 6811-6829.
  • Bennert, T., Hanson, D., Maher, A. & Vitillo, N. (2005). Influence of pavement surface type on tire/pavement generated noise. Journal of Testing and Evaluation, 33 (2), 94-100.
  • Beyene, D., Chae, M., Vasanthan, T., & Bressler, D. C. (2020). A Biorefinery Strategy That Introduces Hydrothermal Treatment Prior to Acid Hydrolysis for Co-generation of Furfural and Cellulose Nanocrystals. Frontiers in Chemistry, 8.
  • Burhenne, L., Messmer, J., Aicher, T., & Laborie, M. P. (2013). The effect of the biomass components lignin, cellulose, and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.
  • Cansiong Guerrra, K. S. & Escobar Avilés, J. (2021). The use of wood as Smart Building Material = El uso de la madera como Smart Building Material. Building & Management, 4(1), 36.
  • Cui, W., Zhang, N., Xu, M., & Cai, L. (2017). Combined effects of ZnO particle deposition and heat treatment on dimensional stability and mechanical properties of poplar wood. Scientific Reports, 7(1).
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti- ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • ISO 4287, (1997). Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standard Organization.
  • Kutnar, A. (2011). Adhesive bonding of hydrothermally modified wood. Adhesive Properties in Nanomaterials, Composites and Films, 71-82.
  • Li, N., Xia, T., Heng, L. & Liu, L. (2013). Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25), 251603.
  • Ma, G., Wang, X., Cai, W., Ma, C., Wang, X., Zhu, Y., Kan, Y., Xing, W., & Hu, Y. (2022). Preparation and Study on Nitrogen- and Phosphorus-Containing Fire Resistant Coatings for Wood by UV-Cured Methods. Frontiers in Materials, 9.
  • Niu, K., & Song, K. (2021). Surface coating and interfacial properties of hot-waxed wood using modified polyethylene wax. Progress in Organic Coatings, 150, 105947.
  • Huang, S., Hu, Y., & Pan, W. (2011). Relationship between the structure and hydrophobic performance of Ni–TiO2 nanocomposite coatings by electrodeposition. Surface and Coatings Technology, 205(13–14), 3872–3876.
  • Ouajai, S., & Shanks, R. A. (2005). Composition, structure, and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş A. (2018b). Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması [Investigation of the effect of aging time, sanding, and cross-section on the surface quality of fir wood] Bartın Orman Fakültesi Dergisi, 20(2), 194-204.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş, A. (2018a). Akıllı malzemeler için biyomimetik yüzey tasarımları [Biomimetic surface designs for smart materials] Journal of Bartin Faculty of Forestry 20(3), 664-676.
  • Qader I.N., Kok M., Dagdelen F., Aydogdu Y, (2019). “A review of smart materials: researches and applications,” El-Cezerî Journal of Science and Engineering, 6(3); 755-788
  • Qu, L., Rahimi, S., Qian, J., He, L., He, Z., & Yi, S. (2021). Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polymer Degradation and Stability, 183, 109429.
  • Rahimi, A. R., Modarress, H., and Iranagh, S. A. (2011) Effect of alumina nanoparticles as nanocomposites on morphology and corrosion resistance of electroless Ni–P coatings,” Surface Engineering 27(1) 26-31.
  • Ramazanoğlu, D., & Özdemir, F. (2023). Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry, 24(2), 122-133.
  • Ramazanoğlu, D., & Özdemir, F. (2019). Lignocellulosic-based smart landscape composites, in: Proceedings of the III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, Turkey, 637-642.
  • Ramazanoğlu, D., & Özdemı̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-33.
  • Ramazanoğlu, D., & Özdemir, F. (2020a). Ön işlem olarak uygulanan ultrasonik banyonun ceviz kaplamaların özellikleri üzerine etkileri Bartın Orman Fakültesi Dergisi, 22(2), 479-484.
  • Ramazanoğlu, D., & Özdemir, F. (2021b). Intelligent biomimetic artificial form for lignocellulosic surfaces. Kastamonu University Journal of Forestry Faculty, 21(2), 95-103.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12, 2421-2428.
  • Ramazanoğlu, D., & Özdemi̇r. F., (2020b). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması Turkish Journal of Forestry, 21(3), 324-331.
  • Ramazanoğlu, D. (2020). Akıllı Biyomimetik Nano Hibrit Yüzey Formlarının Tasarımı ve Lignoselülozik Yüzeyde Hidrotermal Modifikasyonunun İncelenmesi Ph.D. Dissertation, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, Turkey.
  • Ramazanoğlu. D. & Özdemir, F. (2021a). ZnO-based nano biomimetic smart artificial form located on lignocellulosic surface with hydrothermal approach. Kastamonu University Journal of Forestry Faculty, 21(1), 12-20.
  • Hsieh, M.-C., Hung, K.-C., Xu, J.-W., Wu, Y.-H., Chang, W.-S., & Wu, J.-H. (2022). Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 15(1), 147.
  • Nakayasu, Y., Goto, Y., Katsuyama, Y., Itoh, T., & Watanabe, M. (2022). Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends, 8, 100190.
  • Sun, Y. X., Wang, L., Dong, X. Y., Ren, Z. L. & Meng, W. S. (2013). Synthesis, characterization, and crystal structure of a supramolecular CoII complex containing Salen-type bisoxime. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(5), 599-603.
  • Ugolev, B. N. (2006). Frozen strains of wood as natural intelligent material. In: Proceedings of 5th IUFRO symposium wood structure and properties, Zvolen, Slovakia, 423-426.
  • Ugolev, B. N. (2014). Wood as a natural smart material. Wood Science Technology, 48, 553-568.
  • Xiang, E., Huang, R., & Yang, S. (2021). Change in Micromechanical Behavior of Surface Densified Wood Cell Walls in Response to Superheated Steam Treatment. Forests, 12(6), 693.
  • Yeo, J. Y., Chin, B. L. F., Tan, J. K., & Loh, Y. S. (2019). Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute, 92(1), 27-37.
  • Zhai, M., Guo, L., Zhang, Y., Dong, P., Qi, G., and Huang, Y. (2016). Kinetic parameters of biomass pyrolysis by TGA, BioRes. 11(4), 8548-8557.

Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles

Yıl 2023, Cilt: 23 Sayı: 3, 175 - 185, 06.12.2023
https://doi.org/10.17475/kastorman.1394874

Öz

Aim of study: In this research, the surface of Fagus orientalis (beechwood) was chosen as a substrate due to its widely used strong biostructure in the wood industry. It was functionalized with ZnO, TiO2, and FAS-17 nanoparticles to enhance its service life.
Material and methods: FAS-17 (Trimethoxysilane) and ammonium hexafluorotitanate were purchased from Sigma-Aldrich, and zinc borate from Etimine S.A. Methanol, ethyl alcohol, hydrochloric acid, sodium hydroxide, and zinc oxide were provided by TEKKIM. Characterization methods included FTIR, TG/DTA, XRD, SEM, and EDX. Hydrophobicity was determined by water contact angle using KSV Cam101. UV-Vis analysis used a Shimadzu UV-160 spectrophotometer, surface roughness was measured with a Marsurf M 300 device (ISO 4287), and color analysis was performed with a Datacolor Elrepho 450 X spectrometer (ASTM 2021).
Main results: The thermal stability of wood was significantly improved through the hydrothermal deposition of ZnO/TiO2 nanoparticles. Additionally, hydrophobization was achieved using Triethoxy-1H,1H,1H,2H,2H,2H-perfluorodecylsilane (C14H19F13O3Si), referred to as FAS-17.
Research highlights: The study demonstrated that the introduction of ZnO/TiO2 nanoparticles improved the thermal stability of wood. Furthermore, the use of FAS-17 resulted in effective hydrophobization. The thermal stability of wood was improved with ZnO/TiO2 nanoparticles. In addition, hydrophobization was supplied by FAS-17.

Kaynakça

  • Aad, R., Simic, V., Cunff, L. L., Rocha, L., Sallet,V., Sartel, C., Lusson, A., Couteaua, C. & Lerondel, G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives. Nanoscale, 5, 9176-9180.
  • Ali, M. R., Abdullah, U. H., Ashaari, Z., Hamid, N. H., & Hua, L. S. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13(16), 2612.
  • ASTM, Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. (2021).
  • Báder, M., Németh, R., Sandak, J., & Sandak, A. (2020). FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose, 27(12), 6811-6829.
  • Bennert, T., Hanson, D., Maher, A. & Vitillo, N. (2005). Influence of pavement surface type on tire/pavement generated noise. Journal of Testing and Evaluation, 33 (2), 94-100.
  • Beyene, D., Chae, M., Vasanthan, T., & Bressler, D. C. (2020). A Biorefinery Strategy That Introduces Hydrothermal Treatment Prior to Acid Hydrolysis for Co-generation of Furfural and Cellulose Nanocrystals. Frontiers in Chemistry, 8.
  • Burhenne, L., Messmer, J., Aicher, T., & Laborie, M. P. (2013). The effect of the biomass components lignin, cellulose, and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.
  • Cansiong Guerrra, K. S. & Escobar Avilés, J. (2021). The use of wood as Smart Building Material = El uso de la madera como Smart Building Material. Building & Management, 4(1), 36.
  • Cui, W., Zhang, N., Xu, M., & Cai, L. (2017). Combined effects of ZnO particle deposition and heat treatment on dimensional stability and mechanical properties of poplar wood. Scientific Reports, 7(1).
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti- ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • ISO 4287, (1997). Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standard Organization.
  • Kutnar, A. (2011). Adhesive bonding of hydrothermally modified wood. Adhesive Properties in Nanomaterials, Composites and Films, 71-82.
  • Li, N., Xia, T., Heng, L. & Liu, L. (2013). Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25), 251603.
  • Ma, G., Wang, X., Cai, W., Ma, C., Wang, X., Zhu, Y., Kan, Y., Xing, W., & Hu, Y. (2022). Preparation and Study on Nitrogen- and Phosphorus-Containing Fire Resistant Coatings for Wood by UV-Cured Methods. Frontiers in Materials, 9.
  • Niu, K., & Song, K. (2021). Surface coating and interfacial properties of hot-waxed wood using modified polyethylene wax. Progress in Organic Coatings, 150, 105947.
  • Huang, S., Hu, Y., & Pan, W. (2011). Relationship between the structure and hydrophobic performance of Ni–TiO2 nanocomposite coatings by electrodeposition. Surface and Coatings Technology, 205(13–14), 3872–3876.
  • Ouajai, S., & Shanks, R. A. (2005). Composition, structure, and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş A. (2018b). Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması [Investigation of the effect of aging time, sanding, and cross-section on the surface quality of fir wood] Bartın Orman Fakültesi Dergisi, 20(2), 194-204.
  • Özdemir, F., Ramazanoğlu, D., & Tutuş, A. (2018a). Akıllı malzemeler için biyomimetik yüzey tasarımları [Biomimetic surface designs for smart materials] Journal of Bartin Faculty of Forestry 20(3), 664-676.
  • Qader I.N., Kok M., Dagdelen F., Aydogdu Y, (2019). “A review of smart materials: researches and applications,” El-Cezerî Journal of Science and Engineering, 6(3); 755-788
  • Qu, L., Rahimi, S., Qian, J., He, L., He, Z., & Yi, S. (2021). Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polymer Degradation and Stability, 183, 109429.
  • Rahimi, A. R., Modarress, H., and Iranagh, S. A. (2011) Effect of alumina nanoparticles as nanocomposites on morphology and corrosion resistance of electroless Ni–P coatings,” Surface Engineering 27(1) 26-31.
  • Ramazanoğlu, D., & Özdemir, F. (2023). Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry, 24(2), 122-133.
  • Ramazanoğlu, D., & Özdemir, F. (2019). Lignocellulosic-based smart landscape composites, in: Proceedings of the III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, Turkey, 637-642.
  • Ramazanoğlu, D., & Özdemı̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-33.
  • Ramazanoğlu, D., & Özdemir, F. (2020a). Ön işlem olarak uygulanan ultrasonik banyonun ceviz kaplamaların özellikleri üzerine etkileri Bartın Orman Fakültesi Dergisi, 22(2), 479-484.
  • Ramazanoğlu, D., & Özdemir, F. (2021b). Intelligent biomimetic artificial form for lignocellulosic surfaces. Kastamonu University Journal of Forestry Faculty, 21(2), 95-103.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12, 2421-2428.
  • Ramazanoğlu, D., & Özdemi̇r. F., (2020b). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması Turkish Journal of Forestry, 21(3), 324-331.
  • Ramazanoğlu, D. (2020). Akıllı Biyomimetik Nano Hibrit Yüzey Formlarının Tasarımı ve Lignoselülozik Yüzeyde Hidrotermal Modifikasyonunun İncelenmesi Ph.D. Dissertation, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, Turkey.
  • Ramazanoğlu. D. & Özdemir, F. (2021a). ZnO-based nano biomimetic smart artificial form located on lignocellulosic surface with hydrothermal approach. Kastamonu University Journal of Forestry Faculty, 21(1), 12-20.
  • Hsieh, M.-C., Hung, K.-C., Xu, J.-W., Wu, Y.-H., Chang, W.-S., & Wu, J.-H. (2022). Characterization and Prediction of Mechanical and Chemical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. Polymers, 15(1), 147.
  • Nakayasu, Y., Goto, Y., Katsuyama, Y., Itoh, T., & Watanabe, M. (2022). Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends, 8, 100190.
  • Sun, Y. X., Wang, L., Dong, X. Y., Ren, Z. L. & Meng, W. S. (2013). Synthesis, characterization, and crystal structure of a supramolecular CoII complex containing Salen-type bisoxime. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(5), 599-603.
  • Ugolev, B. N. (2006). Frozen strains of wood as natural intelligent material. In: Proceedings of 5th IUFRO symposium wood structure and properties, Zvolen, Slovakia, 423-426.
  • Ugolev, B. N. (2014). Wood as a natural smart material. Wood Science Technology, 48, 553-568.
  • Xiang, E., Huang, R., & Yang, S. (2021). Change in Micromechanical Behavior of Surface Densified Wood Cell Walls in Response to Superheated Steam Treatment. Forests, 12(6), 693.
  • Yeo, J. Y., Chin, B. L. F., Tan, J. K., & Loh, Y. S. (2019). Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute, 92(1), 27-37.
  • Zhai, M., Guo, L., Zhang, Y., Dong, P., Qi, G., and Huang, Y. (2016). Kinetic parameters of biomass pyrolysis by TGA, BioRes. 11(4), 8548-8557.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Endüstri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Doğu Ramazanoğlu

Ferhat Özdemir

Erken Görünüm Tarihi 1 Aralık 2023
Yayımlanma Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 3

Kaynak Göster

APA Ramazanoğlu, D., & Özdemir, F. (2023). Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty, 23(3), 175-185. https://doi.org/10.17475/kastorman.1394874
AMA Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. Aralık 2023;23(3):175-185. doi:10.17475/kastorman.1394874
Chicago Ramazanoğlu, Doğu, ve Ferhat Özdemir. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty 23, sy. 3 (Aralık 2023): 175-85. https://doi.org/10.17475/kastorman.1394874.
EndNote Ramazanoğlu D, Özdemir F (01 Aralık 2023) Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty 23 3 175–185.
IEEE D. Ramazanoğlu ve F. Özdemir, “Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”, Kastamonu University Journal of Forestry Faculty, c. 23, sy. 3, ss. 175–185, 2023, doi: 10.17475/kastorman.1394874.
ISNAD Ramazanoğlu, Doğu - Özdemir, Ferhat. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty 23/3 (Aralık 2023), 175-185. https://doi.org/10.17475/kastorman.1394874.
JAMA Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. 2023;23:175–185.
MLA Ramazanoğlu, Doğu ve Ferhat Özdemir. “Treatment of Fagus Orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles”. Kastamonu University Journal of Forestry Faculty, c. 23, sy. 3, 2023, ss. 175-8, doi:10.17475/kastorman.1394874.
Vancouver Ramazanoğlu D, Özdemir F. Treatment of Fagus orientalis Surface by ZnO/TiO2/FAS-17-Based Nanoparticles. Kastamonu University Journal of Forestry Faculty. 2023;23(3):175-8.

14178  14179       14165           14166           14167            14168