Araştırma Makalesi
BibTex RIS Kaynak Göster

Sarıçam Odununun Derin Ötektik Çözücü Muamelesi Üzerine Muamele Süresinin Etkisi

Yıl 2024, Cilt: 24 Sayı: 1, 48 - 58, 03.04.2024
https://doi.org/10.17475/kastorman.1460439

Öz

Çalışmanın amacı: Bu çalışmada, sarıçam (Pinus sylvestris L.) odununun derin ötektik çözücü (DÖÇ) muamele süresinin (1 saat, 2 saat ve 3 saat) etkileri araştırılmıştır.
Çalışma alanı: Çalışma Türkiye’deki Bartın ilinde gerçekleştirilmiştir.
Materyal ve yöntem: DÖÇ (kolin klorür (ChCl) ve laktik asit (LA)) muameleleri, 121 °C'de bir otoklavda gerçekleştirilmiştir. DÖÇ muamelesinin sarıçam odununun ve ligninin özellikleri üzerine etkileri ilgili standartlara göre belirlenmiştir.
Temel sonuçlar: 3 saat muamele edilmiş numunede delignifikasyon oranı, lignin saflığı ve lignin verimi sırasıyla %79,78, %86,43 ve %82,48 olarak belirlenmiştir. Kİ, 3 saat DÖÇ muamelesi ile %55,87'den %71,58'e yükselmiştir. 3 saat DÖÇ ile muamele edilmiş örneğin lignin saflığı, lignin verimi ve delignifikasyon oranı sırasıyla %86,43, %82,48 ve %79,78 olarak tespit edilmiştir. Brunauer-Emmett-Teller (BET) analiz sonuçları, numunenin yüzey alanının 3 saatlik DÖÇ muamelesi ile arttığını (3,095 m2/g'den 3,621 m2/g'ye) göstermiştir. 1 saat DÖÇ ile muamele edilmiş numune en açık renkli lignini vermiştir (L*: 71,62).
Araştırma vurguları: Sarıçam odununun DÖÇ muamelesi sırasında muamele süresi, odun ve lignin özellikleri üzerinde önemli etkilere sahiptir.

Kaynakça

  • Bai, Y., Zhang, X. F., Wang, Z., Zheng, T. & Yao, J. (2022). Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresource Technology, 347, 126723.
  • Chen, Z. & Wan, C. (2018). Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technology, 250, 532-537.
  • Chen, Y., Zhang, L., Yu, J., Lu, Y., Jiang, B., Fan, Y. & Wang, Z. (2019). High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. Royal Society Open Science, 6(1), 181757.
  • Choi, K.H., Lee, M.K. & Ryu, J.Y. (2016a). Effect of molar ratios of DES on lignin contents and handsheets properties of thermomechanical pulp. Journal of Korea TAPPI, 48, 28-33.
  • Choi, K.H., Nam, Y.S., Lee, M.K. & Ryu, J.Y. (2016b). Changes of BCTMP fibers and handsheets properties by the treatment of LB DES at different molar ratios. Journal of Korea TAPPI, 48, 75-81.
  • Cui, J., Chen, R., Lei, L. & Hou, Y. (2022). Green wood pulping processes with high pulp yield and lignin recovery yield by deep eutectic solvent and its aqueous solutions. Biomass Conversion and Biorefinery, 1-15.
  • Fiskari, J., Ferritsius, R., Osong, S. H., Persson, A., Höglund, T., Immerzeel, P. & Norgren, M. (2020). Deep eutectic solvent delignification to low-energy mechanical pulp to produce papermaking fibers. BioResources, 15, 6023-6032.
  • French, A.D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896.
  • Gong, L., Zha, J., Pan, L., Ma, C. & He, Y.C. (2022). Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. Bioresource Technology, 351, 126945.
  • Gülsoy, S.K., Küçüle, A. & Gençer, A. (2022a). Deep eutectic solvent pulping from sorghum stalks. Maderas. Ciencia y Tecnología, 24(50), 1-12.
  • Gülsoy, S.K., Gitti, Ü.B. & Gençer, A. (2022b). Comparison of soda, kraft, and DES pulp properties of European black poplar. Drvna Industrija, 73(2), 215-226.
  • Gülsoy, S.K. (2023). Comparison of kraft and ternary deep eutectic solvent pulping of scots pine. Industrial Crops and Products, 206, 117596.
  • Ho, M.C., Wu, T.Y. (2020). Sequential pretreatment with alkaline hydrogen peroxide and choline chloride: copper (II) chloride dihydrate–Synergistic fractionation of oil palm fronds. Bioresource Technology, 301, 122684.
  • Hou, X.D., Lin, K.P., Li, A.L., Yang, L.M. & Fu, M.H. (2018). Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation. Industrial Crops and Products, 120, 322-329.
  • Kwon, G.J., Yang, B.S., Park, C.W., Bandi, R., Lee, E.A., Park, J.S., Han, S.Y., Kim, N.H. & Lee, S.H. (2020). Treatment Effects of Choline Chloride-Based Deep Eutectic Solvent on the Chemical Composition of Red Pine (Pinus densiflora). BioResources, 15, 6457-6470.
  • Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L.A., Yang, G., Chen, J. & Saeed, H.A. (2017). Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 18, 2266.
  • Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z. & Lin, X. (2019a). Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega, 4(22), 19829-19839.
  • Liu, Q., Yuan, T., Fu, Q.J., Bai, Y.Y., Peng, F. & Yao, C.L. (2019b). Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose, 26, 9447-9462.
  • Lu, C., Xu, J., Xie, J., Zhu, S., Wang, B., Li, J., Zhang, F. & Chen, K. (2022). Preparation, characterization of light-colored lignin from corn stover by new ternary deep eutectic solvent extraction. International Journal of Biological Macromolecules, 222, 2512-2522.
  • Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A. & Chen, J. (2018). Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(8), 869.
  • Ma, C.Y., Gao, X., Peng, X.P., Gao, Y.F., Liu, J., Wen, J.L. & Yuan, T.Q. (2021). Microwave-assisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion. Industrial Crops and Products, 164, 113415.
  • Mankar, A.R., Pandey, A. & Pant, K.K. (2022). Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Bioresource Technology, 345, 126528.
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., Shi, J. & Boldor, D. (2019). Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196, 1080-1088.
  • New, E.K., Tnah, S.K., Voon, K.S., Yong, K.J., Procentese, A., Shak, K.P.Y., Subramonian, W., Cheng, C.K. & Wu, T.Y. (2022). The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of Environmental Management, 307, 114385.
  • Ong, V.Z., Wu, T.Y., Lee, C.B.T.L., Cheong, N.W.R. & Shak, K.P.Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58, 104598.
  • Ozturk, B., Parkinson, C. & Gonzalez-Miquel, M. (2018). Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separation and Purification Technology, 206, 1-13.
  • Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z. & Lian, H. (2017). Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydrate Polymers, 176, 307-314.
  • Segal, L., Creely, J.J., Martin, A.E. & Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29(10), 786-794.
  • Smink, D., Juan, A., Schuur, B. & Kersten, S.R. (2019). Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Industrial & Engineering Chemistry Research, 58, 16348-16357.
  • Sumer, Z. & Van Lehn, R.C. (2022). Data-centric development of lignin structure–solubility relationships in deep eutectic solvents using molecular simulations. ACS Sustainable Chemistry & Engineering, 10(31), 10144-10156.
  • Škulcová, A., Jablonský, M., Ház, A. & Vrška, M. (2016). Pretreatment of wheat straw using deep eutectic solvents and ultrasound. Przegląd Papierniczy, 72, 243-247.
  • Tang, Z.Y., Li, L., Tang, W., Shen, J.W., Yang, Q.Z., Ma, C. & He, Y.C. (2023). Significantly enhanced enzymatic hydrolysis of waste rice hull through a novel surfactant-based deep eutectic solvent pretreatment. Bioresource Technology, 381, 129106.
  • Xu, F., Sun, J., Wehrs, M., Kim, K.H., Rau, S. S., Chan, A.M., Simmons, B.A., Mukhopadhyay, A. & Singh, S. (2018). Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustainable Chemistry & Engineering, 6(7), 8914-8919.
  • Xu, H., Che, X., Ding, Y., Kong, Y., Li, B. & Tian, W. (2019). Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresource Technology, 279, 271-280.
  • Xu, H., Peng, J., Kong, Y., Liu, Y., Su, Z., Li, B., Song, X., Liu, S. & Tian, W. (2020). Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresource Technology, 123416.
  • Wise, L.E. & Karl, H.L. (1962). Cellulose and Hemicellulose in Pulp and Paper Science and Technology, McGraw Hill Book Co.: New York.
  • Wu, C., Yang, Y., Sun, K., Luo, D., Liu, X., Xiao, H., Bian, H. & Dai, H. (2023). Lignin decolorization in organic solvents and their application in natural sunscreen. International Journal of Biological Macromolecules, 237, 124081.
  • Zhang, Q., Vigier, K.D.O., Royer, S. & Jerome, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41, 7108-7146.

Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood

Yıl 2024, Cilt: 24 Sayı: 1, 48 - 58, 03.04.2024
https://doi.org/10.17475/kastorman.1460439

Öz

Aim of study: The influence of the treatment time (1 hour, 2 hours, and 3 hours) on the deep eutectic solvent (DES) treatment of Scots pine (Pinus sylvestris L.) wood is investigated in this study.
Area of the study: Determination of DES performance on the Scots pine wood chemical structure.
Material and methods: Choline chloride (ChCl) and lactic acid (LA) mixture with molar ratio of 1:10 (w:w) was used as a DES solvent. Treatments were carried out in an autoclave at 121 °C. The effects of DES treatment on the properties of wood and lignin samples of Scots pine were determined according to the relevant standards.
Main results: The delignification ratio, lignin purity, and lignin yield in the 3h-treated sample were determined to be 79.78%, 86.43%, and 82.48%, respectively. The crystallinity index (CrI) was increased from 55.87% to 71.58% with 3 h DES treatment. Brunauer-Emmett-Teller (BET) analysis results showed that the surface area of the sample increased with 3-h DES treatment (from 3.095 m2/g to 3.621 m2/g). The 1-hour DES-treated sample yielded the lightest colored lignin (L*: 71.62).
Research highlights: Treatment time of Scots pine wood during DES treatment has a significant effect on the wood and lignin properties

Kaynakça

  • Bai, Y., Zhang, X. F., Wang, Z., Zheng, T. & Yao, J. (2022). Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresource Technology, 347, 126723.
  • Chen, Z. & Wan, C. (2018). Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technology, 250, 532-537.
  • Chen, Y., Zhang, L., Yu, J., Lu, Y., Jiang, B., Fan, Y. & Wang, Z. (2019). High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. Royal Society Open Science, 6(1), 181757.
  • Choi, K.H., Lee, M.K. & Ryu, J.Y. (2016a). Effect of molar ratios of DES on lignin contents and handsheets properties of thermomechanical pulp. Journal of Korea TAPPI, 48, 28-33.
  • Choi, K.H., Nam, Y.S., Lee, M.K. & Ryu, J.Y. (2016b). Changes of BCTMP fibers and handsheets properties by the treatment of LB DES at different molar ratios. Journal of Korea TAPPI, 48, 75-81.
  • Cui, J., Chen, R., Lei, L. & Hou, Y. (2022). Green wood pulping processes with high pulp yield and lignin recovery yield by deep eutectic solvent and its aqueous solutions. Biomass Conversion and Biorefinery, 1-15.
  • Fiskari, J., Ferritsius, R., Osong, S. H., Persson, A., Höglund, T., Immerzeel, P. & Norgren, M. (2020). Deep eutectic solvent delignification to low-energy mechanical pulp to produce papermaking fibers. BioResources, 15, 6023-6032.
  • French, A.D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896.
  • Gong, L., Zha, J., Pan, L., Ma, C. & He, Y.C. (2022). Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. Bioresource Technology, 351, 126945.
  • Gülsoy, S.K., Küçüle, A. & Gençer, A. (2022a). Deep eutectic solvent pulping from sorghum stalks. Maderas. Ciencia y Tecnología, 24(50), 1-12.
  • Gülsoy, S.K., Gitti, Ü.B. & Gençer, A. (2022b). Comparison of soda, kraft, and DES pulp properties of European black poplar. Drvna Industrija, 73(2), 215-226.
  • Gülsoy, S.K. (2023). Comparison of kraft and ternary deep eutectic solvent pulping of scots pine. Industrial Crops and Products, 206, 117596.
  • Ho, M.C., Wu, T.Y. (2020). Sequential pretreatment with alkaline hydrogen peroxide and choline chloride: copper (II) chloride dihydrate–Synergistic fractionation of oil palm fronds. Bioresource Technology, 301, 122684.
  • Hou, X.D., Lin, K.P., Li, A.L., Yang, L.M. & Fu, M.H. (2018). Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation. Industrial Crops and Products, 120, 322-329.
  • Kwon, G.J., Yang, B.S., Park, C.W., Bandi, R., Lee, E.A., Park, J.S., Han, S.Y., Kim, N.H. & Lee, S.H. (2020). Treatment Effects of Choline Chloride-Based Deep Eutectic Solvent on the Chemical Composition of Red Pine (Pinus densiflora). BioResources, 15, 6457-6470.
  • Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L.A., Yang, G., Chen, J. & Saeed, H.A. (2017). Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 18, 2266.
  • Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z. & Lin, X. (2019a). Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega, 4(22), 19829-19839.
  • Liu, Q., Yuan, T., Fu, Q.J., Bai, Y.Y., Peng, F. & Yao, C.L. (2019b). Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose, 26, 9447-9462.
  • Lu, C., Xu, J., Xie, J., Zhu, S., Wang, B., Li, J., Zhang, F. & Chen, K. (2022). Preparation, characterization of light-colored lignin from corn stover by new ternary deep eutectic solvent extraction. International Journal of Biological Macromolecules, 222, 2512-2522.
  • Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A. & Chen, J. (2018). Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(8), 869.
  • Ma, C.Y., Gao, X., Peng, X.P., Gao, Y.F., Liu, J., Wen, J.L. & Yuan, T.Q. (2021). Microwave-assisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion. Industrial Crops and Products, 164, 113415.
  • Mankar, A.R., Pandey, A. & Pant, K.K. (2022). Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Bioresource Technology, 345, 126528.
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., Shi, J. & Boldor, D. (2019). Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196, 1080-1088.
  • New, E.K., Tnah, S.K., Voon, K.S., Yong, K.J., Procentese, A., Shak, K.P.Y., Subramonian, W., Cheng, C.K. & Wu, T.Y. (2022). The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of Environmental Management, 307, 114385.
  • Ong, V.Z., Wu, T.Y., Lee, C.B.T.L., Cheong, N.W.R. & Shak, K.P.Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58, 104598.
  • Ozturk, B., Parkinson, C. & Gonzalez-Miquel, M. (2018). Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separation and Purification Technology, 206, 1-13.
  • Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z. & Lian, H. (2017). Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydrate Polymers, 176, 307-314.
  • Segal, L., Creely, J.J., Martin, A.E. & Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29(10), 786-794.
  • Smink, D., Juan, A., Schuur, B. & Kersten, S.R. (2019). Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Industrial & Engineering Chemistry Research, 58, 16348-16357.
  • Sumer, Z. & Van Lehn, R.C. (2022). Data-centric development of lignin structure–solubility relationships in deep eutectic solvents using molecular simulations. ACS Sustainable Chemistry & Engineering, 10(31), 10144-10156.
  • Škulcová, A., Jablonský, M., Ház, A. & Vrška, M. (2016). Pretreatment of wheat straw using deep eutectic solvents and ultrasound. Przegląd Papierniczy, 72, 243-247.
  • Tang, Z.Y., Li, L., Tang, W., Shen, J.W., Yang, Q.Z., Ma, C. & He, Y.C. (2023). Significantly enhanced enzymatic hydrolysis of waste rice hull through a novel surfactant-based deep eutectic solvent pretreatment. Bioresource Technology, 381, 129106.
  • Xu, F., Sun, J., Wehrs, M., Kim, K.H., Rau, S. S., Chan, A.M., Simmons, B.A., Mukhopadhyay, A. & Singh, S. (2018). Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustainable Chemistry & Engineering, 6(7), 8914-8919.
  • Xu, H., Che, X., Ding, Y., Kong, Y., Li, B. & Tian, W. (2019). Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresource Technology, 279, 271-280.
  • Xu, H., Peng, J., Kong, Y., Liu, Y., Su, Z., Li, B., Song, X., Liu, S. & Tian, W. (2020). Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresource Technology, 123416.
  • Wise, L.E. & Karl, H.L. (1962). Cellulose and Hemicellulose in Pulp and Paper Science and Technology, McGraw Hill Book Co.: New York.
  • Wu, C., Yang, Y., Sun, K., Luo, D., Liu, X., Xiao, H., Bian, H. & Dai, H. (2023). Lignin decolorization in organic solvents and their application in natural sunscreen. International Journal of Biological Macromolecules, 237, 124081.
  • Zhang, Q., Vigier, K.D.O., Royer, S. & Jerome, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41, 7108-7146.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Fiziği ve Mekaniği
Bölüm Makaleler
Yazarlar

Sezgin Koray Gülsoy 0000-0002-3079-9015

Ayben Kilic

Erken Görünüm Tarihi 28 Mart 2024
Yayımlanma Tarihi 3 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 24 Sayı: 1

Kaynak Göster

APA Gülsoy, S. K., & Kilic, A. (2024). Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood. Kastamonu University Journal of Forestry Faculty, 24(1), 48-58. https://doi.org/10.17475/kastorman.1460439
AMA Gülsoy SK, Kilic A. Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood. Kastamonu University Journal of Forestry Faculty. Nisan 2024;24(1):48-58. doi:10.17475/kastorman.1460439
Chicago Gülsoy, Sezgin Koray, ve Ayben Kilic. “Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood”. Kastamonu University Journal of Forestry Faculty 24, sy. 1 (Nisan 2024): 48-58. https://doi.org/10.17475/kastorman.1460439.
EndNote Gülsoy SK, Kilic A (01 Nisan 2024) Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood. Kastamonu University Journal of Forestry Faculty 24 1 48–58.
IEEE S. K. Gülsoy ve A. Kilic, “Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood”, Kastamonu University Journal of Forestry Faculty, c. 24, sy. 1, ss. 48–58, 2024, doi: 10.17475/kastorman.1460439.
ISNAD Gülsoy, Sezgin Koray - Kilic, Ayben. “Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood”. Kastamonu University Journal of Forestry Faculty 24/1 (Nisan 2024), 48-58. https://doi.org/10.17475/kastorman.1460439.
JAMA Gülsoy SK, Kilic A. Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood. Kastamonu University Journal of Forestry Faculty. 2024;24:48–58.
MLA Gülsoy, Sezgin Koray ve Ayben Kilic. “Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood”. Kastamonu University Journal of Forestry Faculty, c. 24, sy. 1, 2024, ss. 48-58, doi:10.17475/kastorman.1460439.
Vancouver Gülsoy SK, Kilic A. Effect of Treatment Time on Deep Eutectic Solvent Treatment of Scots Pine Wood. Kastamonu University Journal of Forestry Faculty. 2024;24(1):48-5.

14178  14179       14165           14166           14167            14168