Research Article
BibTex RIS Cite

Bazı Ağaç Kabuğu Ekstraktlarının ve Uçucu Yağlarının Antioksidan, Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Araştırılması

Year 2024, Volume: 24 Issue: 3, 292 - 301, 24.12.2024
https://doi.org/10.17475/kastorman.1599973

Abstract

Çalışmanın amacı: On beş farklı ağaç kabuğunun (Thuja plicata, Sequoia sempervirens, Eucalyptus globulus, Pinus nigra, Platanus orientalis, Fagus orientalis, Populus tremula, Castanea sativa, Pinus sylvestris, Pinus pinaster, Picea orientalis, Populus nigra, Cryptomeria japonica, Abies nordmanniana, Quercus robur) etanol ekstreleri ve uçucu yağlarının biyoaktif özelliklerinin ortaya çıkartılmasıdır.
Materyal ve yöntem: Bu çalışmada, 15 farklı ağaç kabuğunun biyoaktif özellikleri araştırıldı. Etanol ekstreleri, polifenol içerikleri, antioksidan ve antimikrobiyal aktiviteler açısından test edildi; esansiyel yağlar ise anti-quorum sensing aktivitesi için test edildi.
Temel sonuçlar: Ana sonuçlar: Birçok kabuk, polifenolik bileşenlerin, tanen içeriğinin ve antioksidan aktivitenin ortalaması açısından yüksek potansiyel sergiledi, bu da onları orman ve farmasötik endüstri için potansiyel biyoaktif kaynaklar haline getirmektedir.
Araştırma vurguları: E. globulus, C. sativa ve Q. robur kabuklarının etanol ekstreleri, toplam polifenol içeriği, antioksidan ve antimikrobiyal özellikler açısından dikkate değer sonuçlar gösterdi. Populus nigra, Populus tremula ve Platanus orientalis kabuklarının esansiyel yağları ise olumlu anti-QS aktivitesi sergiledi. Bu bilgilere ek olarak Q. robur ve E. globulus yüksek biyoaktif potansiyele sahip olduğunu gösterdi.

References

  • Abudoleh, S. M. & Mahasneh, A. M. (2017). Anti-quorum sensing activity of substances isolated from wild berry associated bacteria. Avicenna Journal of Medical Biotechnology, 9(1), 23.
  • Al Bari, M. A. A., Sayeed, M. A., Rahman, M. S. & Mossadik, M. A. (2006). Characterization and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiensis a novel specis collected in Bangladesh. Research Journal of Medicine and Medical Sciences, 1(2),78-81.
  • Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
  • Bereksi, M. S., Hassaïne, H., Bekhechi, C. & Abdelouahid, D. E. (2018). Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacognosy Journal, 10(3), 507-512.
  • Bidarkar, V. K., Swain, P. S., Ray, S. & Dominic, G. (2014). Probiotics: Potential alternative to antibiotics in ruminant feeding. Trends in Veterinary and Animal Sciences, 1(1), 1-4.
  • Bjarnsholt, T., Jensen, P. Ø., Rasmussen, T. B., Christophersen, L., Calum, H., Hentzer, M., et al. (2005). Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology, 151(12), 3873-3880.
  • Braga, N., Rodrigues, F. & PP Oliveira, M. B. (2015). Castanea sativa by-products: A review on added value and sustainable application. Natural Product Research, 29(1), 1-18.
  • Choo, J. H., Rukayadi, Y. & Hwang, J. K. (2006). Inhibition of bacterial quorum sensing by vanilla extract. Letters in applied microbiology, 42(6), 637-641.
  • Clinical and Laboratory Standards Institute. (2016). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Pennsylvania, USA.
  • Compean, K. L. & Ynalvez, R. A. (2014). Antimicrobial activity of plant secondary metabolites: A review. Research Journal of Medicinal Plant, 8(5), 204-213.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.
  • Dudonné, S., Vitrac, X., Coutiere, P., Woillez, M. & Mérillon, J.M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural Food Chemistry, 57(5), 1768-1774.
  • Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. frontiers in Microbiology, 8, 199,1-11.
  • Fijan, S. (2016). Antimicrobial effect of probiotics against common pathogens. Probiotics and prebiotics in human nutrition and health, 10, 5772.
  • Fukumoto, L. R. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of agricultural and food chemistry, 48(8), 3597-3604.
  • Goryachev, A. B. (2009). Design principles of the bacterial quorum sensing gene networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(1), 45-60.
  • Hentzer, M. & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of clinical investigation, 112(9), 1300-1307.
  • Hmelo, L. R. (2017). Quorum sensing in marine microbial environments. Annual review of marine science, 9, 257-281.
  • Hughes, D. T. & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111-120.
  • Javid, T., Adnan, M., Tariq, A., Akhtar, B., Ullah, R. & Abd El Salam, N. M. (2015). Antimicrobial activity of three medicinal plants (Artemisia indica, Medicago falcate and Tecoma stans). African Journal of Traditional, Complementary and Alternative Medicines, 12(3), 91-96.
  • Jayaraman, A. & Wood, T. K. (2008). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 10, 145-167.
  • Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of agricultural and food chemistry, 33(2), 213-217.
  • Kemppainen, K., Siika-aho, M., Pattathil, S., Giovando, S. & Kruus, K. (2014). Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Industrial Crops and Products, 52, 158-168.
  • Kendall, M. M. & Sperandio, V. (2016). What a dinner party! Mechanisms and functions of interkingdom signaling in host-pathogen associations. MBio, 7(2), 10-1128.
  • Kerekes, E. B., Deák, É., Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C. & Krisch, J. (2013). Anti‐biofilm forming and anti‐quorum sensing activity of selected essential oils and their main components on food‐related micro‐organisms. Journal of Applied Microbiology, 115(4), 933-942.
  • LaSarre, B. & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and molecular biology reviews, 77(1), 73-111.
  • Li, Y. H. & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519-2538.
  • Lowery, C. A., Dickerson, T. J. & Janda, K. D. (2008). Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chemical Society Reviews, 37(7), 1337-1346.
  • Marasini, B. P., Baral, P., Aryal, P., Ghimire, K. R., Neupane, S., Dahal, N., et al. (2015). Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed research international, 2015.
  • Metsämuuronen, S. & Siren, H. (2014). Antibacterial compounds in predominant trees in Finland. Journal of Bioprocessing & Biotechniques, 4(5), 1.
  • Miranda, I., Gominho, J., Mirra, I. & Pereira, H. (2012). Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products, 36(1), 395-400.
  • Mokhetho, K. C., Sandasi, M., Ahmad, A., Kamatou, G. P. & Viljoen, A. M. (2018). Identification of potential anti-quorum sensing compounds in essential oils: A gas chromatography-based metabolomics approach. Journal of Essential Oil Research, 30(6), 399-408.
  • Norizan, S. N. M., Yin, W. F. & Chan, K. G. (2013). Caffeine as a potential quorum sensing inhibitor. Sensors, 13(4), 5117-5129.
  • Omar, S., Lemonnier, B., Jones, N., Ficker, C., Smith, M. L., Neema, C., et al. (2000). Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. Journal of ethnopharmacology, 73(1-2), 161-170.
  • Özgenç, Ö., Durmaz, S., Yıldız, Ü. C., & Erişir, E. (2017). A comparison between some wood bark extracts: Antifungal activity. Kastamonu University Journal of Forestry Faculty, 17(3), 502-508.
  • Parisien, A., Allain, B., Zhang, J., Mandeville, R. & Lan, C. Q. (2008). Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of applied microbiology, 104(1), 1-13.
  • Poli, J. P., Guinoiseau, E., de Rocca Serra, D., Sutour, S., Paoli, M., Tomi, F., et al. (2018). Anti-Quorum Sensing Activity of 12 Essential Oils on chromobacterium violaceum and Specific Action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules, 23(9),1-11.
  • Rahman, M. M. & Gray, A. I. (2005). A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry, 66(13), 1601-1606.
  • Ramanan, R., Kim, B.H., Cho, D.H., Oh, H. M., & Kim, H. S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), 14-29.
  • Rutherford, S. T. & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11), a012427.
  • Santos, C. L., Albuquerque, A. J. R., Sampaio, F. C. & Keyson, D. (2013). Nanomaterials with antimicrobial properties: applications in health sciences. Microbial pathogens and strategies for combating them: science, technology and education, 4(2).
  • Sharmeen, R., Hossain, M. N., Rahman, M. M., Foysal, M. J. & Miah, M. F. (2012). In-vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. International Current Pharmaceutical Journal, 1(6), 133-137.
  • Slinkard, K. & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 28(1), 49-55.
  • Sokół-Łętowska, A., Oszmiański, J. & Wojdyło, A. (2007). Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food chemistry, 103(3), 853-859.
  • Stauff, D. L. & Bassler, B. L. (2011). Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. Journal of bacteriology, 193(15), 3871-3878.
  • Tan, L. Y., Yin, W. F. & Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon-natural food sources with anti-quorum sensing properties. Sensors, 13(3), 3975-3985.
  • Valencia-Avilés, E., García-Pérez, M. E., Garnica-Romo, M. G., Figueroa-Cárdenas, J. D. D., Meléndez-Herrera, E., Salgado-Garciglia, R. & Martínez-Flores, H. E. (2018). Antioxidant properties of polyphenolic extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla bark. Antioxidants, 7(7), 81, 1-11.
  • Vasavi, H. S., Arun, A. B. & Rekha, P. D. (2014). Anti‐quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiology and immunology, 58(5), 286-293.
  • Wang, L., Hu, C. & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 1227-1249.
  • Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G. & Norris, J. S. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrobial agents and chemotherapy, 47(4), 1301-1307.
  • Yang, G. & Jaakkola, P. (2012). Extractives with Antimicrobial Properties from Scots Pine. BIOTULI project.
  • Yarwood, J. M. & Schlievert, P. M. (2003). Quorum sensing in Staphylococcus infections. The Journal of clinical investigation, 112(11), 1620-1625.
  • Yılmaz, B. & Deniz, İ. (2017). The effects of cultivation area and altitude variation on the composition of essential oil of Laurus nobilis L. grown in eastern, Western and Central Karadeniz Region. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 187-194.

Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities

Year 2024, Volume: 24 Issue: 3, 292 - 301, 24.12.2024
https://doi.org/10.17475/kastorman.1599973

Abstract

Aim of study: The objective of this research is to uncover the bioactive characteristics of ethanol extracts and essential oils from 15 different tree barks (Thuja plicata, Sequoia sempervirens, Eucalyptus globulus, Pinus nigra, Platanus orientalis, Fagus orientalis, Populus tremula, Castanea sativa, Pinus sylvestris, Pinus pinaster, Picea orientalis, Populus nigra, Cryptomeria japonica, Abies nordmanniana, Quercus robur).
Material and method: In this study, the bioactive properties of 15 different tree barks were investigated. Ethanol extracts were analyzed for their polyphenolic content, antioxidant activity, and antimicrobial properties. Additionally, the essential oils were evaluated for their anti-quorum sensing capabilities.
Main results: Several barks demonstrated high potential as sources of polyphenolic compounds, tannins, and antioxidant activity, indicating their potential as bioactive resources for the forestry and pharmaceutical industries.
Research highlights: The ethanol extracts of Eucalyptus globulus, Castanea sativa, and Quercus robur barks showed remarkable results regarding total polyphenolic content, antioxidant activity, and antimicrobial properties. Essential oils from the barks of Populus nigra, Populus tremula, and Platanus orientalis exhibited positive anti-quorum sensing activity. Moreover, both Quercus robur and Eucalyptus globulus displayed high bioactive potential.

References

  • Abudoleh, S. M. & Mahasneh, A. M. (2017). Anti-quorum sensing activity of substances isolated from wild berry associated bacteria. Avicenna Journal of Medical Biotechnology, 9(1), 23.
  • Al Bari, M. A. A., Sayeed, M. A., Rahman, M. S. & Mossadik, M. A. (2006). Characterization and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiensis a novel specis collected in Bangladesh. Research Journal of Medicine and Medical Sciences, 1(2),78-81.
  • Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
  • Bereksi, M. S., Hassaïne, H., Bekhechi, C. & Abdelouahid, D. E. (2018). Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacognosy Journal, 10(3), 507-512.
  • Bidarkar, V. K., Swain, P. S., Ray, S. & Dominic, G. (2014). Probiotics: Potential alternative to antibiotics in ruminant feeding. Trends in Veterinary and Animal Sciences, 1(1), 1-4.
  • Bjarnsholt, T., Jensen, P. Ø., Rasmussen, T. B., Christophersen, L., Calum, H., Hentzer, M., et al. (2005). Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology, 151(12), 3873-3880.
  • Braga, N., Rodrigues, F. & PP Oliveira, M. B. (2015). Castanea sativa by-products: A review on added value and sustainable application. Natural Product Research, 29(1), 1-18.
  • Choo, J. H., Rukayadi, Y. & Hwang, J. K. (2006). Inhibition of bacterial quorum sensing by vanilla extract. Letters in applied microbiology, 42(6), 637-641.
  • Clinical and Laboratory Standards Institute. (2016). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Pennsylvania, USA.
  • Compean, K. L. & Ynalvez, R. A. (2014). Antimicrobial activity of plant secondary metabolites: A review. Research Journal of Medicinal Plant, 8(5), 204-213.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.
  • Dudonné, S., Vitrac, X., Coutiere, P., Woillez, M. & Mérillon, J.M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural Food Chemistry, 57(5), 1768-1774.
  • Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. frontiers in Microbiology, 8, 199,1-11.
  • Fijan, S. (2016). Antimicrobial effect of probiotics against common pathogens. Probiotics and prebiotics in human nutrition and health, 10, 5772.
  • Fukumoto, L. R. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of agricultural and food chemistry, 48(8), 3597-3604.
  • Goryachev, A. B. (2009). Design principles of the bacterial quorum sensing gene networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(1), 45-60.
  • Hentzer, M. & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of clinical investigation, 112(9), 1300-1307.
  • Hmelo, L. R. (2017). Quorum sensing in marine microbial environments. Annual review of marine science, 9, 257-281.
  • Hughes, D. T. & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111-120.
  • Javid, T., Adnan, M., Tariq, A., Akhtar, B., Ullah, R. & Abd El Salam, N. M. (2015). Antimicrobial activity of three medicinal plants (Artemisia indica, Medicago falcate and Tecoma stans). African Journal of Traditional, Complementary and Alternative Medicines, 12(3), 91-96.
  • Jayaraman, A. & Wood, T. K. (2008). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 10, 145-167.
  • Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of agricultural and food chemistry, 33(2), 213-217.
  • Kemppainen, K., Siika-aho, M., Pattathil, S., Giovando, S. & Kruus, K. (2014). Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Industrial Crops and Products, 52, 158-168.
  • Kendall, M. M. & Sperandio, V. (2016). What a dinner party! Mechanisms and functions of interkingdom signaling in host-pathogen associations. MBio, 7(2), 10-1128.
  • Kerekes, E. B., Deák, É., Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C. & Krisch, J. (2013). Anti‐biofilm forming and anti‐quorum sensing activity of selected essential oils and their main components on food‐related micro‐organisms. Journal of Applied Microbiology, 115(4), 933-942.
  • LaSarre, B. & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and molecular biology reviews, 77(1), 73-111.
  • Li, Y. H. & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519-2538.
  • Lowery, C. A., Dickerson, T. J. & Janda, K. D. (2008). Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chemical Society Reviews, 37(7), 1337-1346.
  • Marasini, B. P., Baral, P., Aryal, P., Ghimire, K. R., Neupane, S., Dahal, N., et al. (2015). Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed research international, 2015.
  • Metsämuuronen, S. & Siren, H. (2014). Antibacterial compounds in predominant trees in Finland. Journal of Bioprocessing & Biotechniques, 4(5), 1.
  • Miranda, I., Gominho, J., Mirra, I. & Pereira, H. (2012). Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products, 36(1), 395-400.
  • Mokhetho, K. C., Sandasi, M., Ahmad, A., Kamatou, G. P. & Viljoen, A. M. (2018). Identification of potential anti-quorum sensing compounds in essential oils: A gas chromatography-based metabolomics approach. Journal of Essential Oil Research, 30(6), 399-408.
  • Norizan, S. N. M., Yin, W. F. & Chan, K. G. (2013). Caffeine as a potential quorum sensing inhibitor. Sensors, 13(4), 5117-5129.
  • Omar, S., Lemonnier, B., Jones, N., Ficker, C., Smith, M. L., Neema, C., et al. (2000). Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. Journal of ethnopharmacology, 73(1-2), 161-170.
  • Özgenç, Ö., Durmaz, S., Yıldız, Ü. C., & Erişir, E. (2017). A comparison between some wood bark extracts: Antifungal activity. Kastamonu University Journal of Forestry Faculty, 17(3), 502-508.
  • Parisien, A., Allain, B., Zhang, J., Mandeville, R. & Lan, C. Q. (2008). Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of applied microbiology, 104(1), 1-13.
  • Poli, J. P., Guinoiseau, E., de Rocca Serra, D., Sutour, S., Paoli, M., Tomi, F., et al. (2018). Anti-Quorum Sensing Activity of 12 Essential Oils on chromobacterium violaceum and Specific Action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules, 23(9),1-11.
  • Rahman, M. M. & Gray, A. I. (2005). A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry, 66(13), 1601-1606.
  • Ramanan, R., Kim, B.H., Cho, D.H., Oh, H. M., & Kim, H. S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), 14-29.
  • Rutherford, S. T. & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11), a012427.
  • Santos, C. L., Albuquerque, A. J. R., Sampaio, F. C. & Keyson, D. (2013). Nanomaterials with antimicrobial properties: applications in health sciences. Microbial pathogens and strategies for combating them: science, technology and education, 4(2).
  • Sharmeen, R., Hossain, M. N., Rahman, M. M., Foysal, M. J. & Miah, M. F. (2012). In-vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. International Current Pharmaceutical Journal, 1(6), 133-137.
  • Slinkard, K. & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 28(1), 49-55.
  • Sokół-Łętowska, A., Oszmiański, J. & Wojdyło, A. (2007). Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food chemistry, 103(3), 853-859.
  • Stauff, D. L. & Bassler, B. L. (2011). Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. Journal of bacteriology, 193(15), 3871-3878.
  • Tan, L. Y., Yin, W. F. & Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon-natural food sources with anti-quorum sensing properties. Sensors, 13(3), 3975-3985.
  • Valencia-Avilés, E., García-Pérez, M. E., Garnica-Romo, M. G., Figueroa-Cárdenas, J. D. D., Meléndez-Herrera, E., Salgado-Garciglia, R. & Martínez-Flores, H. E. (2018). Antioxidant properties of polyphenolic extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla bark. Antioxidants, 7(7), 81, 1-11.
  • Vasavi, H. S., Arun, A. B. & Rekha, P. D. (2014). Anti‐quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiology and immunology, 58(5), 286-293.
  • Wang, L., Hu, C. & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 1227-1249.
  • Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G. & Norris, J. S. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrobial agents and chemotherapy, 47(4), 1301-1307.
  • Yang, G. & Jaakkola, P. (2012). Extractives with Antimicrobial Properties from Scots Pine. BIOTULI project.
  • Yarwood, J. M. & Schlievert, P. M. (2003). Quorum sensing in Staphylococcus infections. The Journal of clinical investigation, 112(11), 1620-1625.
  • Yılmaz, B. & Deniz, İ. (2017). The effects of cultivation area and altitude variation on the composition of essential oil of Laurus nobilis L. grown in eastern, Western and Central Karadeniz Region. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 187-194.
There are 53 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering (Other)
Journal Section Articles
Authors

Bilge Yılmaz This is me

Sana Tabbouche This is me

İlhan Deniz

Ali Osman Kiliç

Zehra Can

Early Pub Date December 14, 2024
Publication Date December 24, 2024
Submission Date January 3, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 24 Issue: 3

Cite

APA Yılmaz, B., Tabbouche, S., Deniz, İ., Kiliç, A. O., et al. (2024). Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities. Kastamonu University Journal of Forestry Faculty, 24(3), 292-301. https://doi.org/10.17475/kastorman.1599973
AMA Yılmaz B, Tabbouche S, Deniz İ, Kiliç AO, Can Z. Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities. Kastamonu University Journal of Forestry Faculty. December 2024;24(3):292-301. doi:10.17475/kastorman.1599973
Chicago Yılmaz, Bilge, Sana Tabbouche, İlhan Deniz, Ali Osman Kiliç, and Zehra Can. “Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities”. Kastamonu University Journal of Forestry Faculty 24, no. 3 (December 2024): 292-301. https://doi.org/10.17475/kastorman.1599973.
EndNote Yılmaz B, Tabbouche S, Deniz İ, Kiliç AO, Can Z (December 1, 2024) Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities. Kastamonu University Journal of Forestry Faculty 24 3 292–301.
IEEE B. Yılmaz, S. Tabbouche, İ. Deniz, A. O. Kiliç, and Z. Can, “Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities”, Kastamonu University Journal of Forestry Faculty, vol. 24, no. 3, pp. 292–301, 2024, doi: 10.17475/kastorman.1599973.
ISNAD Yılmaz, Bilge et al. “Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities”. Kastamonu University Journal of Forestry Faculty 24/3 (December 2024), 292-301. https://doi.org/10.17475/kastorman.1599973.
JAMA Yılmaz B, Tabbouche S, Deniz İ, Kiliç AO, Can Z. Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities. Kastamonu University Journal of Forestry Faculty. 2024;24:292–301.
MLA Yılmaz, Bilge et al. “Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities”. Kastamonu University Journal of Forestry Faculty, vol. 24, no. 3, 2024, pp. 292-01, doi:10.17475/kastorman.1599973.
Vancouver Yılmaz B, Tabbouche S, Deniz İ, Kiliç AO, Can Z. Investigation of Some Tree Bark Extracts and Essential Oils for Antioxidant, Antimicrobial and Anti-Quorum Sensing Activities. Kastamonu University Journal of Forestry Faculty. 2024;24(3):292-301.

14178  14179       14165           14166           14167            14168