Araştırma Makalesi
BibTex RIS Kaynak Göster

Kış Kentlerinde Meydanların Etkin Kullanımı ve Termal Konfora Etkilerinin ENVI-met İle Araştırılması

Yıl 2023, Cilt: 16 Sayı: 3, 1580 - 1596, 15.09.2023
https://doi.org/10.35674/kent.1231067

Öz

Kentlerde iç mekânlar yerine açık peyzaj alanları Covid-19 salgını ile daha çok tercih edilir olmuştur. Dış mekân kullanımı mekânların konforlu olup olamaması ile alakalıdır. Dış mekânlar termal açıdan ne kadar konforlu ise kullanımı o kadar yoğun olmaktadır. Erzurum kenti bir kış kenti olup Dsb (kışlar soğuk ve yağışlı, yazlar kurak ve sıcak) iklim sınıfında yer almaktadır. Yaz aylarında yüksek rakımından dolayı oldukça sıcak ve kurak, kış aylarında oldukça sert ve soğuk bir iklime sahiptir. Erzurum kent merkezinde en çok kullanılan meydanlardan birisi olan Havuzbaşı Kent Meydanı çalışma alanı olarak seçilmiş ve portatif peyzaj tasarımları ile 4 adet alternatif hazırlanmıştır. Yapılan çalışmaların çoğu tek mevsim odaklı olup, bu araştırmada hem kış (Ocak 2017) hem de yaz mevsimi (Temmuz 2017) değerlendirmeye alınmıştır. Bu kapsamda; mevcut durum ve 4 farklı senaryonun hem yaz hem de kış ayları için ENVI-met analizi yapılmıştır. Yapılan iklim analizlerinde hava sıcaklığı, bağıl nem, rüzgâr hızı, Yansıyan sıcaklık (MRT), Tahmini Ortalama Oy (PMV) ve Fizyolojik Eşdeğer Sıcaklık (PET) indeksleri günün en sıcak saati olan 14:00 için değerlendirmeye alınmıştır. Değerlendirmeler sonucunda; kent meydanlarında sadece sert zemin olmaması, meydanlarda yeşil alanların ve diğer peyzaj tasarım öğelerinin de yer alması gerektiği ortaya çıkmıştır. Ayrıca üretilen senaryolardan meydan ortasında toplu bir peyzaj tasarım alanı olan Alternatif 4 en iyi sonucu vererek; ocak ayı PET ortalamasını 0,3 ℃ arttırmış, temmuz ayı için de 2,8 ℃ ortalama PET değerini düşürmüştür. Sonuç olarak günümüz kent meydanlarında yeşil alan ve peyzaj tasarım öğeleri kullanıldıkça termal konfor artış göstermektedir.

Kaynakça

  • Aboelata, A., & Sodoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 168, 106490.
  • Acero, J. A., & Herranz-Pascual, K., 2015. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modeling techniques. Building and Environment, 93, 245-257.
  • Acero, J. A., Ruefenacht, L. A., Koh, E. J., Tan, Y. S., & Norford, L. K. (2022). Measuring and comparing thermal comfort in outdoor and semi-outdoor spaces in tropical Singapore. Urban Climate, 42, 101122.
  • Ali-Toudert, F., & Mayer, H., 2006. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Al-Obaidi, K. M., Ismail, M., & Rahman, A. M. A. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3(3), 283-297.
  • Al-Obaidi, K. M., Ismail, M., & Rahman, A. M. A. (2014a). Design and performance of a novel innovative roofing system for tropical landed houses. Energy Conversion and Management, 85, 488-504.
  • Andreou, E., 2013. Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable energy, 55, 182-188.
  • Berkovic, S., Yezioro, A., & Bitan, A., 2012. Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 86(5), 1173-1186.
  • Brozovsky, J., Corio, S., Gaitani, N., & Gustavsen, A. (2021). Evaluation of sustainable strategies and design solutions at high-latitude urban settlements to enhance outdoor thermal comfort. Energy and Buildings, 244, 111037.
  • Bruse, M., 2018. ENVI-met 4.3 V. Retrieved from http://www.envi-met.com/
  • Chatzidimitriou, A., & Yannas, S. (2015). Microclimate development in open urban spaces: The influence of form and materials. Energy and Buildings, 108, 156-174.
  • Chatzidimitriou, A., & Yannas, S., 2016. Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26, 27-47.
  • Chatzidimitriou, A., & Yannas, S., 2017. Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable cities and society, 33, 85-101.
  • Chen, L., Wen, Y., Zhang, L., & Xiang, W. N. (2015). Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment, 94, 644-653.
  • Eliasson, I. (2000). The use of climate knowledge in urban planning. Landscape and urban planning, 48(1-2), 31-44.
  • Emmanuel, R., Rosenlund, H., & Johansson, E., 2007. Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. International journal of climatology, 27(14), 1995-2004.
  • Fanger, P. O., 1972. Thermal Comfort: Analysis and Applications in Environmental Engineering. New York: McGraw-Hill Book Company, 244.
  • Ghaffarianhoseini, A., Berardi, U., Ghaffarianhoseini, A., & Al-Obaidi, K. (2019). Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur, Malaysia. Science of the total environment, 666, 1327-1345.
  • Gober, P., Middel, A., Brazel, A., Myint, S., Chang, H., Duh, J. D., & House-Peters, L., 2012. Tradeoffs between water conservation and temperature amelioration in Phoenix and Portland: implications for urban sustainability. Urban Geography, 33(7), 1030-1054.
  • Huang, H., & Peng, M. (2020, March). The outdoor thermal comfort of urban square: A field study in a cold season in Chongqing. In IOP Conference Series: Earth and Environmental Science (Vol. 467, No. 1, p. 012215). IOP Publishing.
  • Krüger, E. L., Minella, F. O., & Rasia, F., 2011. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621-634.
  • Lai, A., Maing, M., & Ng, E. (2017). Observational studies of mean radiant temperature across different outdoor spaces under shaded conditions in densely built environments. Building and Environment, 114, 397-409.
  • Lenzholzer, S. (2010). Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. International journal of biometeorology, 54(2), 141-150.
  • Lenzholzer, S. (2012). Research and design for thermal comfort in Dutch urban squares. Resources, conservation and recycling, 64, 39-48.
  • Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment, 45(1), 213-221.
  • Lindberg, F., Thorsson, S., Rayner, D., & Lau, K., 2016. The impact of urban planning strategies on heat stress in a climate-change perspective. Sustainable Cities and Society, 25, 1-12.
  • Lindén, J., Fonti, P., & Esper, J. (2016). Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban Forestry & Urban Greening, 20, 198-209.
  • Liu, S., Zhao, J., Xu, M., & Ahmadian, E. (2021). Effects of landscape patterns on the summer microclimate and human comfort in urban squares in China. Sustainable Cities and Society, 73, 103099.
  • Liu, W., Zhang, Y., & Deng, Q. (2016). The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy and Buildings, 128, 190-197.
  • Manavvi, S., & Rajasekar, E. (2022). Assessing thermal comfort in urban squares in humid subtropical climate: A structural equation modeling approach. Building and Environment, 109931.
  • Martinelli, L., & Matzarakis, A., 2017. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97-106.
  • Matzarakis, A., Mayer, H., & Iziomon, M. G., 1999. Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2), 76-84.
  • Middel, A., Brazel, A. J., Gober, P., Myint, S. W., Chang, H., & Duh, J. D., 2012. Land cover, climate, and the summer surface energy balance in Phoenix, AZ, and Portland, OR. International journal of climatology, 32(13), 2020-2032.
  • Middel, A., Brazel, A. J., Kaplan, S., & Myint, S. W., 2012a. Daytime cooling efficiency and diurnal energy balance in Phoenix, Arizona, USA. Climate Research, 54(1), 21-34.
  • Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S., 2014. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28.
  • Nikolopoulou, M., & Lykoudis, S. (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 42(10), 3691-3707.
  • Ramlee, M., Omar, D., Yunus, R. M., & Samadi, Z., 2015. Revitalization of urban public spaces: An overview. Procedia-Social and Behavioral Sciences, 201, 360-367.
  • Rashdi, W. S. S. W., & Embi, M. R. (2016). Analysing optimum building form in relation to lower cooling load. Procedia-Social and Behavioral Sciences, 222, 782-790.
  • Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar energy, 80(4), 435-447.
  • Shashua-Bar, L., Pearlmutter, D., & Erell, E., 2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, 92(3-4), 179-186.
  • Spangenberg, J., Shinzato, P., Johansson, E., & Duarte, D. (2008). Simulation of the influence of vegetation on microclimate and thermal comfort in the city of São Paulo. Revista da Sociedade Brasileira de Arborização Urbana, 3(2), 1-19.
  • Stocco, S., Cantón, M. A., & Correa, E. (2021, June). Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. In Building Simulation (Vol. 14, No. 3, pp. 763-777). Tsinghua University Press.
  • Tablada, A., De Troyer, F., Blocken, B., Carmeliet, J., & Verschure, H., 2009. On natural ventilation and thermal comfort in compact urban environments–the Old Havana case. Building and Environment, 44(9), 1943-1958.
  • Taleghani, M., Tenpierik, M., van den Dobbelsteen, A., & Sailor, D. J., 2014. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Solar Energy, 103, 108-124.
  • Teixeira, C. F. B. (2021). Green space configuration and its impact on human behavior and URBAN environments. Urban Climate, 35, 100746.
  • Tseliou, A., Koletsis, I., Pantavou, K., Thoma, E., Lykoudis, S., & Tsiros, I. X. (2022). Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece. Urban Climate, 44, 101217.
  • Tsitoura, M., Michailidou, M., & Tsoutsos, T., 2017. A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153, 368-381.
  • Van Craenendonck S., Lauriks L., Vuye C., & Kampen J., 2018. A review of human thermal comfort experiments in controlled and semi-controlled environments. Renewable and Sustainable Energy Reviews, 82 (3): 3365-3378.
  • Xiao, J., & Yuizono, T. (2022). Climate-adaptive landscape design: Microclimate and thermal comfort regulation of Station Square in the Hokuriku Region, Japan. Building and Environment, 212, 108813.
  • Yang, W., Wong, N. H., & Zhang, G. (2013). A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. International journal of biometeorology, 57(6), 895-907.
  • Yavaş, M., & Yılmaz, S. (2020). İklim duyarlı kentsel tasarım ilkeleri: Erzurum kenti örneği. Planlama Dergisi, 30(2), 294-312.
  • Yılmaz S., Sezen I., Irmak M. A. , Kulekci E. A., 2021a. Analysis of outdoor thermal comfort and air pollution under the influence of urban morphology in cold-climate cities: Erzurum/Turkey, Environmental Science and Pollution Research, 28 (45): 64068 - 64083. DOI 10.1007/s11356-021-14082-3
  • Yilmaz S., Kulekci E. A., Mutlu B. E. , Sezen I., 2021d. Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model, Environmental Science and Pollution Research, 28 (45): 63837–63859. https://doi.org/10.1007/s11356-020-12009-y
  • Yilmaz S., Mutlu B. E., Aksu A., Mutlu, E., Qaid, A., 2021b. "Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey", Environmental Science and Pollution Research, 28 (3): 3672-3693. DOI10.1007/s11356-020-10555-z
  • Yilmaz S., Mutlu E., and Yilmaz H., 2017. Quantification of thermal comfort of based on different Street orientations in winter months of urban city Dadaskent. GREEN CITIES 2017 International Symposium on greener cities for more efficient ecosystem services in a climate changing world - Oral presentation, 12/15 September Bologna, ITALY.
  • Yilmaz S., Sezen I., Sari E. N., 2021c.The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey, Environmental and Ecological Statistics, 28 (4): 733–759- WOS:000613320700001- DOI 10.1007/s10651-021-00484-6
  • Yilmaz, H., Yildiz, N. D., Avdan, U., Koc, A., & Matzarakis, A., 2015. Analysis of human thermal conditions in winter for different urban structures in Erzurum. In ICUC9-9th International Conference on Urban Climate jointly with 12th symposium on the Urban Environment (pp. 20-24).
  • Yilmaz, H., Yilmaz, S., Yavaş, M., Mutlu, E., & Koç, A., 2016. Climate-sensitive pavement modeling for pedestrian ways. Procedia Engineering, 169, 408-415.
  • Yu, H., Fukuda, H., Zhou, M., & Ma, X. (2022). Improvement strategies for microclimate and thermal comfort for urban squares: a case of a cold climate area in China. Buildings, 12(7), 944.
  • Zölch, T., Rahman, M. A., Pfleiderer, E., Wagner, G., & Pauleit, S. (2019). Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment, 149, 640-654.

Efficient Use Of Squares in Winter Cities With ENVI-met Analysis and The Effects On Thermal Comfort

Yıl 2023, Cilt: 16 Sayı: 3, 1580 - 1596, 15.09.2023
https://doi.org/10.35674/kent.1231067

Öz

With the Covid-19 epidemic, open landscape areas have become more preferred instead of indoor spaces in cities. Outdoor use is related to whether the spaces are comfortable or not. The more comfortable the outdoor spaces are in terms of thermals, the more intensive its use. Erzurum city is a winter city and is in Dsb (winters are cold and rainy, summers are dry and hot) climate class. It has a very hot and dry climate in summer due to its high altitude, and a very harsh and cold climate in winter. Havuzbaşi City Square, which is one of the most used squares in Erzurum city center, was chosen as the working area and 4 alternatives were prepared with portable landscape designs. Most of the studies are focused on a single season, and both winter (January 2017) and summer (July 2017) seasons were evaluated in this study. In this context, ENVI-met analysis was made for the current situation and 4 different scenarios for both summer and winter months. In the climate analyzes made, air temperature, relative humidity, wind speed, Mean Radiant Temperature (MRT), Predicted Mean Vote (PMV) and Physiological Equivalent Temperature (PET) indexes were evaluated for 14:00, the hottest hour of the day. As a result of the evaluations, It has been revealed that city squares should not only have hard floors, but also green areas and other landscape design elements should be included in the squares. In addition, Alternative 4, which is a collective landscape design area in the middle of the square, gave the best results, increasing the average PET value to 0,3 ℃ for January and reducing 2,8 ℃ for July. As a result, thermal comfort increases as green space and landscape design elements are used in today's city squares.

Kaynakça

  • Aboelata, A., & Sodoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 168, 106490.
  • Acero, J. A., & Herranz-Pascual, K., 2015. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modeling techniques. Building and Environment, 93, 245-257.
  • Acero, J. A., Ruefenacht, L. A., Koh, E. J., Tan, Y. S., & Norford, L. K. (2022). Measuring and comparing thermal comfort in outdoor and semi-outdoor spaces in tropical Singapore. Urban Climate, 42, 101122.
  • Ali-Toudert, F., & Mayer, H., 2006. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
  • Al-Obaidi, K. M., Ismail, M., & Rahman, A. M. A. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3(3), 283-297.
  • Al-Obaidi, K. M., Ismail, M., & Rahman, A. M. A. (2014a). Design and performance of a novel innovative roofing system for tropical landed houses. Energy Conversion and Management, 85, 488-504.
  • Andreou, E., 2013. Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable energy, 55, 182-188.
  • Berkovic, S., Yezioro, A., & Bitan, A., 2012. Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 86(5), 1173-1186.
  • Brozovsky, J., Corio, S., Gaitani, N., & Gustavsen, A. (2021). Evaluation of sustainable strategies and design solutions at high-latitude urban settlements to enhance outdoor thermal comfort. Energy and Buildings, 244, 111037.
  • Bruse, M., 2018. ENVI-met 4.3 V. Retrieved from http://www.envi-met.com/
  • Chatzidimitriou, A., & Yannas, S. (2015). Microclimate development in open urban spaces: The influence of form and materials. Energy and Buildings, 108, 156-174.
  • Chatzidimitriou, A., & Yannas, S., 2016. Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26, 27-47.
  • Chatzidimitriou, A., & Yannas, S., 2017. Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable cities and society, 33, 85-101.
  • Chen, L., Wen, Y., Zhang, L., & Xiang, W. N. (2015). Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment, 94, 644-653.
  • Eliasson, I. (2000). The use of climate knowledge in urban planning. Landscape and urban planning, 48(1-2), 31-44.
  • Emmanuel, R., Rosenlund, H., & Johansson, E., 2007. Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. International journal of climatology, 27(14), 1995-2004.
  • Fanger, P. O., 1972. Thermal Comfort: Analysis and Applications in Environmental Engineering. New York: McGraw-Hill Book Company, 244.
  • Ghaffarianhoseini, A., Berardi, U., Ghaffarianhoseini, A., & Al-Obaidi, K. (2019). Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur, Malaysia. Science of the total environment, 666, 1327-1345.
  • Gober, P., Middel, A., Brazel, A., Myint, S., Chang, H., Duh, J. D., & House-Peters, L., 2012. Tradeoffs between water conservation and temperature amelioration in Phoenix and Portland: implications for urban sustainability. Urban Geography, 33(7), 1030-1054.
  • Huang, H., & Peng, M. (2020, March). The outdoor thermal comfort of urban square: A field study in a cold season in Chongqing. In IOP Conference Series: Earth and Environmental Science (Vol. 467, No. 1, p. 012215). IOP Publishing.
  • Krüger, E. L., Minella, F. O., & Rasia, F., 2011. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621-634.
  • Lai, A., Maing, M., & Ng, E. (2017). Observational studies of mean radiant temperature across different outdoor spaces under shaded conditions in densely built environments. Building and Environment, 114, 397-409.
  • Lenzholzer, S. (2010). Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. International journal of biometeorology, 54(2), 141-150.
  • Lenzholzer, S. (2012). Research and design for thermal comfort in Dutch urban squares. Resources, conservation and recycling, 64, 39-48.
  • Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment, 45(1), 213-221.
  • Lindberg, F., Thorsson, S., Rayner, D., & Lau, K., 2016. The impact of urban planning strategies on heat stress in a climate-change perspective. Sustainable Cities and Society, 25, 1-12.
  • Lindén, J., Fonti, P., & Esper, J. (2016). Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban Forestry & Urban Greening, 20, 198-209.
  • Liu, S., Zhao, J., Xu, M., & Ahmadian, E. (2021). Effects of landscape patterns on the summer microclimate and human comfort in urban squares in China. Sustainable Cities and Society, 73, 103099.
  • Liu, W., Zhang, Y., & Deng, Q. (2016). The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy and Buildings, 128, 190-197.
  • Manavvi, S., & Rajasekar, E. (2022). Assessing thermal comfort in urban squares in humid subtropical climate: A structural equation modeling approach. Building and Environment, 109931.
  • Martinelli, L., & Matzarakis, A., 2017. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97-106.
  • Matzarakis, A., Mayer, H., & Iziomon, M. G., 1999. Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2), 76-84.
  • Middel, A., Brazel, A. J., Gober, P., Myint, S. W., Chang, H., & Duh, J. D., 2012. Land cover, climate, and the summer surface energy balance in Phoenix, AZ, and Portland, OR. International journal of climatology, 32(13), 2020-2032.
  • Middel, A., Brazel, A. J., Kaplan, S., & Myint, S. W., 2012a. Daytime cooling efficiency and diurnal energy balance in Phoenix, Arizona, USA. Climate Research, 54(1), 21-34.
  • Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S., 2014. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28.
  • Nikolopoulou, M., & Lykoudis, S. (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 42(10), 3691-3707.
  • Ramlee, M., Omar, D., Yunus, R. M., & Samadi, Z., 2015. Revitalization of urban public spaces: An overview. Procedia-Social and Behavioral Sciences, 201, 360-367.
  • Rashdi, W. S. S. W., & Embi, M. R. (2016). Analysing optimum building form in relation to lower cooling load. Procedia-Social and Behavioral Sciences, 222, 782-790.
  • Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar energy, 80(4), 435-447.
  • Shashua-Bar, L., Pearlmutter, D., & Erell, E., 2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, 92(3-4), 179-186.
  • Spangenberg, J., Shinzato, P., Johansson, E., & Duarte, D. (2008). Simulation of the influence of vegetation on microclimate and thermal comfort in the city of São Paulo. Revista da Sociedade Brasileira de Arborização Urbana, 3(2), 1-19.
  • Stocco, S., Cantón, M. A., & Correa, E. (2021, June). Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. In Building Simulation (Vol. 14, No. 3, pp. 763-777). Tsinghua University Press.
  • Tablada, A., De Troyer, F., Blocken, B., Carmeliet, J., & Verschure, H., 2009. On natural ventilation and thermal comfort in compact urban environments–the Old Havana case. Building and Environment, 44(9), 1943-1958.
  • Taleghani, M., Tenpierik, M., van den Dobbelsteen, A., & Sailor, D. J., 2014. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Solar Energy, 103, 108-124.
  • Teixeira, C. F. B. (2021). Green space configuration and its impact on human behavior and URBAN environments. Urban Climate, 35, 100746.
  • Tseliou, A., Koletsis, I., Pantavou, K., Thoma, E., Lykoudis, S., & Tsiros, I. X. (2022). Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece. Urban Climate, 44, 101217.
  • Tsitoura, M., Michailidou, M., & Tsoutsos, T., 2017. A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153, 368-381.
  • Van Craenendonck S., Lauriks L., Vuye C., & Kampen J., 2018. A review of human thermal comfort experiments in controlled and semi-controlled environments. Renewable and Sustainable Energy Reviews, 82 (3): 3365-3378.
  • Xiao, J., & Yuizono, T. (2022). Climate-adaptive landscape design: Microclimate and thermal comfort regulation of Station Square in the Hokuriku Region, Japan. Building and Environment, 212, 108813.
  • Yang, W., Wong, N. H., & Zhang, G. (2013). A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. International journal of biometeorology, 57(6), 895-907.
  • Yavaş, M., & Yılmaz, S. (2020). İklim duyarlı kentsel tasarım ilkeleri: Erzurum kenti örneği. Planlama Dergisi, 30(2), 294-312.
  • Yılmaz S., Sezen I., Irmak M. A. , Kulekci E. A., 2021a. Analysis of outdoor thermal comfort and air pollution under the influence of urban morphology in cold-climate cities: Erzurum/Turkey, Environmental Science and Pollution Research, 28 (45): 64068 - 64083. DOI 10.1007/s11356-021-14082-3
  • Yilmaz S., Kulekci E. A., Mutlu B. E. , Sezen I., 2021d. Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model, Environmental Science and Pollution Research, 28 (45): 63837–63859. https://doi.org/10.1007/s11356-020-12009-y
  • Yilmaz S., Mutlu B. E., Aksu A., Mutlu, E., Qaid, A., 2021b. "Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey", Environmental Science and Pollution Research, 28 (3): 3672-3693. DOI10.1007/s11356-020-10555-z
  • Yilmaz S., Mutlu E., and Yilmaz H., 2017. Quantification of thermal comfort of based on different Street orientations in winter months of urban city Dadaskent. GREEN CITIES 2017 International Symposium on greener cities for more efficient ecosystem services in a climate changing world - Oral presentation, 12/15 September Bologna, ITALY.
  • Yilmaz S., Sezen I., Sari E. N., 2021c.The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey, Environmental and Ecological Statistics, 28 (4): 733–759- WOS:000613320700001- DOI 10.1007/s10651-021-00484-6
  • Yilmaz, H., Yildiz, N. D., Avdan, U., Koc, A., & Matzarakis, A., 2015. Analysis of human thermal conditions in winter for different urban structures in Erzurum. In ICUC9-9th International Conference on Urban Climate jointly with 12th symposium on the Urban Environment (pp. 20-24).
  • Yilmaz, H., Yilmaz, S., Yavaş, M., Mutlu, E., & Koç, A., 2016. Climate-sensitive pavement modeling for pedestrian ways. Procedia Engineering, 169, 408-415.
  • Yu, H., Fukuda, H., Zhou, M., & Ma, X. (2022). Improvement strategies for microclimate and thermal comfort for urban squares: a case of a cold climate area in China. Buildings, 12(7), 944.
  • Zölch, T., Rahman, M. A., Pfleiderer, E., Wagner, G., & Pauleit, S. (2019). Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment, 149, 640-654.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Peyzaj Mimarlığı
Bölüm Tüm Makaleler
Yazarlar

Hasan Yılmaz 0000-0003-3768-4760

Emral Mutlu 0000-0003-4097-067X

Yayımlanma Tarihi 15 Eylül 2023
Gönderilme Tarihi 8 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Yılmaz, H., & Mutlu, E. (2023). Efficient Use Of Squares in Winter Cities With ENVI-met Analysis and The Effects On Thermal Comfort. Kent Akademisi, 16(3), 1580-1596. https://doi.org/10.35674/kent.1231067

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi

Bilgi, İletişim, Kültür, Sanat ve Medya Hizmetleri (ICAM Network) www.icamnetwork.net

Executive Office: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net