Araştırma Makalesi
BibTex RIS Kaynak Göster

Economic and Structural Evaluation of the Flexible Pavements Constructed with Different Construction and Demolition Wastes as Aggregates in Their Granular Bases

Yıl 2023, , 734 - 751, 15.06.2023
https://doi.org/10.31466/kfbd.1288042

Öz

Recently, many studies have been searching for alternative sustainable road materials to natural crushed stone aggregate (NA) due to both its limited production and the destruction of the environment in the production stages. In this context, the aim of this study is to investigate the effect of the use of recycled aggregates as a granular base material, the granular base has specific gradation and aggrepate properties, called plant mix base (PMT), on flexible pavement thickness and road construction cost. Within the scope of this study, NA and four different waste aggregates used in PMT were evaluated and pavement thicknesses for 135 different design scenarios, including three different road classes, natural soil bearing capacities and traffic conditions (5x3x3x3) were determined based on the AASHTO 93 pavement design method. The estimated road construction costs were also determined by using the unit prices of Turkish General Directory of Highway in 2023. When PMT formed with NA is used, it has been observed that the total asphalt pavement thickness was less than when using PMT formed with waste aggregates. Despite the differences in asphalt pavement thicknesses, the construction costs of the roads built with waste aggregates were found to be lower than those built with NA. It has been concluded that waste aggregates have the potential to be used in flexible pavement PMT layers due to the lack of excessive pavement thickness increase, the lower cost of road construction compared to that of NA and environmental benefits.

Kaynakça

  • AASHTO (1993). AASHTO guide for design of pavement structures. Washington, D.C.: American Association of State Highway and Transportation Officials.
  • Ağar E., Sütaş İ., Öztaş G. (1998). Beton yollar. İTÜ.
  • Arulrajah, A., Piratheepan, J., Aatheesan., T., and Bo, M. W. (2011). Geotechnical properties of recycled crushed brick in pavement applications. Journal of Materials in Civil Engineering, 23(10): 1444-1452, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319.
  • Arulrajah, A., Piratheepan, J., Disfani, M. M., and Bo, M. W. (2013). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25(8): 1077-1088, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652.
  • Arulrajah, A., Mohammadinia, A., Phummiphan, I., Horpibulsuk, S., and Samingthong W. (2016). Stabilization of recycled demolition aggregates by geopolymers comprising calcium carbide residue, fly ash and slag precursors. Construction and Building Materials, 114: 864-73, https://doi.org/10.1016/j.conbuildmat.2016.03.150.
  • ASTM C 127-01 (2001). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. West Conshohocken, USA: ASTM International.
  • ASTM C 128-01 (2001). Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. West Conshohocken, USA: ASTM International.
  • ASTM D 1241-00 (2005). Specification for Materials for Soil-aggregate Sub-base, Base and Surface Courses. West Conshohocken, USA: ASTM International.
  • ASTM D 1557 (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. West Conshohocken, USA: ASTM International.
  • ASTM D 2487-11 (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, USA: ASTM International.
  • ASTM D 422-63 (2009). Standard Test Method for Particle-Size Analysis of Soils. West Conshohocken, USA: ASTM International.
  • ASTM D 854-02 (2009). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, USA: ASTM International.
  • ASTM D 1883–99 (1999). Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils. West Conshohocken, USA: ASTM International.
  • ASTM C 131-03 (2003). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. West Conshohocken, USA: ASTM International.
  • Çolakoğlu, H., Ok, B., and Sarıcı, T. (2021). Geri Dönüştürülmüş Farklı Tip İnşaat ve Yıkıntı Atıklarının Kompaksiyon Özelliklerinin İncelenmesi. 5th International Symposium on Natural Hazards and Disaster Management, Kasım 5-7, Sakarya, Türkiye. https://doi.org/10.33793/acperpro.04.02.47.
  • Gabr, A. R., and Cameron, D.A. (2012). Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24(6): 754-764, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447.
  • Geçkil, T., Sarıcı, T., and Ok, B. (2022). Model studies on recycled whole rubber tyre reinforced granular fillings on weak soil. Revista de la Construcción, 21(2): 264-280. http://dx.doi.org/10.7764/rdlc.21.2.264.
  • Jiménez, J. R., Ayuso, J., Agrela, F., López, M., and Galvín, A. P. (2012a). Utilisation of unbound recycled aggregates from selected cdw in unpaved rural roads. Resources, Conservation and Recycling, 58:88–97.
  • Jiménez, J. R., Ayuso, J., Galvín, A. P., López, M., and Agrela, F., (2012b). Use of Mixed Recycled Aggregates with a Low Embodied Energy From Non-Selected CDW in Unpaved Rural Roads. Construction and Building Materials, 34:34-43.
  • KGM (2008). Karayolları esnek üstyapılar projelendirme rehberi.
  • KGM (2013). Karayolları teknik şartnamesi.
  • KGM (2013). Araştırma ve Geliştirme Dairesi Başkanlığı ve Bölge Araştırma ve Geliştirme Başmühendisliklerinin Görevleriyle İlgili Hizmetler İçin 2023 Yılı 1. Dönemi Birim Fiyat Listesi. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/MerkezBirimler/ProgramIzlemeDairesiBaskanligi/2023YiliBirimFiyatListesi.pdf.
  • Mehrjardi, G. T., Azizi, A., Haji-Azizi, A., and Asdollafardi, G. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23: 100349, https://doi.org/10.1016/j.trgeo.2020.100349.
  • Mohammadinia, A., Arulrajah, A., Horpibulsuk, S., and Shourijeh, P. T. (2019a). Impact of potassium cations on the light chemical stabilization of construction and demolition wastes. Construction and Building Materials, 203: 69-74, https://doi.org/10.1016/j.conbuildmat.2019.01.083.
  • Mohammadinia, A., Arulrajah, A., Phummiphan, I., Horpibulsuk, S., and Mirzababaei, M. (2019b). Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue. Construction and Building Materials, 199: 115-23, https://doi.org/10.1016/j.conbuildmat.2018.12.031.
  • NCHRP (2004). Guide for mechanistic–empirical design of new and rehabilitated pavement structures. Final Report, NCHRP Project 1–37A. TRB, National Research Council, Washington, D.C., http://trb.org/mepdg/guide.htm.
  • Ok, B., and Demir, A. (2018). Yapım Yıkım Atıklarının Yol Temellerinde Kullanılabilirliğinin İncelenmesi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (1), 224-236.
  • Ok, B., Sarici, T., Talaslioglu, T., and Yildiz, A. (2020). Geotechnical properties of recycled construction and demolition materials for filling applications. Transportation Geotechnics, 24: 100380, https://doi.org/10.1016/j.trgeo.2020.100380.
  • Ok, B., Çolakoğlu, H. (2022). Kompaksiyon yönteminin farklı tip geri dönüştürülmüş agregalar üzerindeki etkilerinin incelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3): 1592-1607.
  • Ok, B., Sarici, T., Demir, A., Talaslioglu, T., and Yildiz A. (2023). Investigation of construction and demolition materials reinforced by geosynthetics. Proceedings of the Institution of Civil Engineers – Engineering Sustainability. https://doi.org/10.1680/jensu.22.00077
  • Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., and Maghool, F. (2019). Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 221: 200–209, https://doi.org/10.1016/j.conbuildmat.2019.06.047.
  • Poon, C. S., and Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20: 578–585, https://doi.org/10.1016/j.conbuildmat.2005.01.045.
  • Sangiorgi, C., Lantieri, C., and Dondi, G. (2013). Construction and demolition waste recycling: an application for road construction. International Journal of Pavement Engineering, 16(6): 530-537, http://dx.doi.org/10.1080/10298436.2014.943134.
  • Sarıcı, T., Ok, B., Mert, A., and Comez, S. (2022). The resilient modulus of hybrid construction and demolition wastes reinforced by a geogrid. Acta Geotechnica Slovenica, 2022(2): 2-14. https://doi.org/10.18690/actageotechslov.19.2.2-14.2022
  • Yaghoubi, E., Arulrajah, A., Wong, Y. C., and Horpibulsuk, S. (2017). Stiffness properties of recycled concrete aggregate with polyethylene plastic granules in unbound pavement applications. Journal of Materials in Civil Engineering, 29(4): 1-7, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001821.

Geri Dönüştürülmüş Farklı İnşaat ve Yıkıntı Atıklarının Yol Temellerinde Kullanımının Maliyet ve Esnek Üstyapı Kalınlığına Etkisinin Araştırılması

Yıl 2023, , 734 - 751, 15.06.2023
https://doi.org/10.31466/kfbd.1288042

Öz

Günümüzde hem üretiminin sınırlı olması hem de üretim aşamalarının çevreyi tahrip etmesinden dolayı doğal kırma taş agregaya (DA) alternatif olabilecek sürdürülebilir yol malzemelerini araştırmak ön plana çıkmıştır. Bu bağlamda, bu çalışmanın amacı geri dönüştürülmüş agregaların plent miks temel (PMT) olarak kullanımının esnek üstyapı kalınlığına ve yol yapım maliyetine etkisinin araştırılmasıdır. Bu çalışma kapsamında DA ve dört farklı atık agrega PMT’de kullanılacak şekilde AASHTO 93 üstyapı tasarım yönteminde değerlendirilmiş ve üç farklı yol sınıfı, tabi zemin taşıma gücü ve trafik yoğunluğu olmak üzere (5x3x3x3) 135 farklı tasarım senaryosu için üstyapı kalınlıkları ile Karayolları 2023 yılı birim fiyatları kullanılarak yaklaşık yol yapım maliyetleri hesaplanmıştır. DA ile teşkil edilen PMT kullanıldığında toplam kaplama kalınlığının atık agregalarla teşkil edilen PMT’nin kullanılma durumuna göre daha az olduğu görülmüştür. Kaplama kalınlıklarındaki farklılıklara rağmen atık agregalarla inşa edilen yolların yapım maliyetleri DA ile inşa edilene göre daha düşük olmuştur. Kaplama kalınlığında fazla bir artış olmaması, yol yapım maliyetinin DA’ya göre daha az olması ve çevresel faydaları sebebi ile atık agregaların esnek üstyapı PMT tabakalarında kullanılma potansiyeline sahip olduğu sonucuna varılmıştır.

Kaynakça

  • AASHTO (1993). AASHTO guide for design of pavement structures. Washington, D.C.: American Association of State Highway and Transportation Officials.
  • Ağar E., Sütaş İ., Öztaş G. (1998). Beton yollar. İTÜ.
  • Arulrajah, A., Piratheepan, J., Aatheesan., T., and Bo, M. W. (2011). Geotechnical properties of recycled crushed brick in pavement applications. Journal of Materials in Civil Engineering, 23(10): 1444-1452, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319.
  • Arulrajah, A., Piratheepan, J., Disfani, M. M., and Bo, M. W. (2013). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25(8): 1077-1088, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652.
  • Arulrajah, A., Mohammadinia, A., Phummiphan, I., Horpibulsuk, S., and Samingthong W. (2016). Stabilization of recycled demolition aggregates by geopolymers comprising calcium carbide residue, fly ash and slag precursors. Construction and Building Materials, 114: 864-73, https://doi.org/10.1016/j.conbuildmat.2016.03.150.
  • ASTM C 127-01 (2001). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. West Conshohocken, USA: ASTM International.
  • ASTM C 128-01 (2001). Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. West Conshohocken, USA: ASTM International.
  • ASTM D 1241-00 (2005). Specification for Materials for Soil-aggregate Sub-base, Base and Surface Courses. West Conshohocken, USA: ASTM International.
  • ASTM D 1557 (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. West Conshohocken, USA: ASTM International.
  • ASTM D 2487-11 (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, USA: ASTM International.
  • ASTM D 422-63 (2009). Standard Test Method for Particle-Size Analysis of Soils. West Conshohocken, USA: ASTM International.
  • ASTM D 854-02 (2009). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, USA: ASTM International.
  • ASTM D 1883–99 (1999). Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils. West Conshohocken, USA: ASTM International.
  • ASTM C 131-03 (2003). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. West Conshohocken, USA: ASTM International.
  • Çolakoğlu, H., Ok, B., and Sarıcı, T. (2021). Geri Dönüştürülmüş Farklı Tip İnşaat ve Yıkıntı Atıklarının Kompaksiyon Özelliklerinin İncelenmesi. 5th International Symposium on Natural Hazards and Disaster Management, Kasım 5-7, Sakarya, Türkiye. https://doi.org/10.33793/acperpro.04.02.47.
  • Gabr, A. R., and Cameron, D.A. (2012). Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24(6): 754-764, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447.
  • Geçkil, T., Sarıcı, T., and Ok, B. (2022). Model studies on recycled whole rubber tyre reinforced granular fillings on weak soil. Revista de la Construcción, 21(2): 264-280. http://dx.doi.org/10.7764/rdlc.21.2.264.
  • Jiménez, J. R., Ayuso, J., Agrela, F., López, M., and Galvín, A. P. (2012a). Utilisation of unbound recycled aggregates from selected cdw in unpaved rural roads. Resources, Conservation and Recycling, 58:88–97.
  • Jiménez, J. R., Ayuso, J., Galvín, A. P., López, M., and Agrela, F., (2012b). Use of Mixed Recycled Aggregates with a Low Embodied Energy From Non-Selected CDW in Unpaved Rural Roads. Construction and Building Materials, 34:34-43.
  • KGM (2008). Karayolları esnek üstyapılar projelendirme rehberi.
  • KGM (2013). Karayolları teknik şartnamesi.
  • KGM (2013). Araştırma ve Geliştirme Dairesi Başkanlığı ve Bölge Araştırma ve Geliştirme Başmühendisliklerinin Görevleriyle İlgili Hizmetler İçin 2023 Yılı 1. Dönemi Birim Fiyat Listesi. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/MerkezBirimler/ProgramIzlemeDairesiBaskanligi/2023YiliBirimFiyatListesi.pdf.
  • Mehrjardi, G. T., Azizi, A., Haji-Azizi, A., and Asdollafardi, G. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23: 100349, https://doi.org/10.1016/j.trgeo.2020.100349.
  • Mohammadinia, A., Arulrajah, A., Horpibulsuk, S., and Shourijeh, P. T. (2019a). Impact of potassium cations on the light chemical stabilization of construction and demolition wastes. Construction and Building Materials, 203: 69-74, https://doi.org/10.1016/j.conbuildmat.2019.01.083.
  • Mohammadinia, A., Arulrajah, A., Phummiphan, I., Horpibulsuk, S., and Mirzababaei, M. (2019b). Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue. Construction and Building Materials, 199: 115-23, https://doi.org/10.1016/j.conbuildmat.2018.12.031.
  • NCHRP (2004). Guide for mechanistic–empirical design of new and rehabilitated pavement structures. Final Report, NCHRP Project 1–37A. TRB, National Research Council, Washington, D.C., http://trb.org/mepdg/guide.htm.
  • Ok, B., and Demir, A. (2018). Yapım Yıkım Atıklarının Yol Temellerinde Kullanılabilirliğinin İncelenmesi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (1), 224-236.
  • Ok, B., Sarici, T., Talaslioglu, T., and Yildiz, A. (2020). Geotechnical properties of recycled construction and demolition materials for filling applications. Transportation Geotechnics, 24: 100380, https://doi.org/10.1016/j.trgeo.2020.100380.
  • Ok, B., Çolakoğlu, H. (2022). Kompaksiyon yönteminin farklı tip geri dönüştürülmüş agregalar üzerindeki etkilerinin incelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3): 1592-1607.
  • Ok, B., Sarici, T., Demir, A., Talaslioglu, T., and Yildiz A. (2023). Investigation of construction and demolition materials reinforced by geosynthetics. Proceedings of the Institution of Civil Engineers – Engineering Sustainability. https://doi.org/10.1680/jensu.22.00077
  • Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., and Maghool, F. (2019). Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 221: 200–209, https://doi.org/10.1016/j.conbuildmat.2019.06.047.
  • Poon, C. S., and Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20: 578–585, https://doi.org/10.1016/j.conbuildmat.2005.01.045.
  • Sangiorgi, C., Lantieri, C., and Dondi, G. (2013). Construction and demolition waste recycling: an application for road construction. International Journal of Pavement Engineering, 16(6): 530-537, http://dx.doi.org/10.1080/10298436.2014.943134.
  • Sarıcı, T., Ok, B., Mert, A., and Comez, S. (2022). The resilient modulus of hybrid construction and demolition wastes reinforced by a geogrid. Acta Geotechnica Slovenica, 2022(2): 2-14. https://doi.org/10.18690/actageotechslov.19.2.2-14.2022
  • Yaghoubi, E., Arulrajah, A., Wong, Y. C., and Horpibulsuk, S. (2017). Stiffness properties of recycled concrete aggregate with polyethylene plastic granules in unbound pavement applications. Journal of Materials in Civil Engineering, 29(4): 1-7, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001821.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Orhan Kaya 0000-0001-6072-3882

Bahadır Ok 0000-0001-8333-5671

Erken Görünüm Tarihi 15 Haziran 2023
Yayımlanma Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kaya, O., & Ok, B. (2023). Geri Dönüştürülmüş Farklı İnşaat ve Yıkıntı Atıklarının Yol Temellerinde Kullanımının Maliyet ve Esnek Üstyapı Kalınlığına Etkisinin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 13(2), 734-751. https://doi.org/10.31466/kfbd.1288042