Araştırma Makalesi
BibTex RIS Kaynak Göster

Lactarius deliciosus Biyokütlesi ile Sulu Çözeltilerden Oksitetrasiklin Giderimi

Yıl 2023, , 1135 - 1152, 15.09.2023
https://doi.org/10.31466/kfbd.1300792

Öz

Artan nüfus ve gelişen teknolojiyle birlikte Dünya genelinde tedavi amaçlı antibiyotik kullanımı oldukça fazladır. Buna bağlı olarak vücutta metabolize olmadan atılan antibiyotik kalıntıları atık sulara karışmakta ve ekolojik olarak büyük bir çevre sorunu haline gelmektedir. Bu çalışmada tetrasiklin grubu antibiyotiklerden biri olan oksitetrasiklinin (OTC) yenilebilir bir mantar türü olan Lactarius deliciosus’tan elde edilen biyokütle ile sulu çözeltilerden giderimi araştırılmıştır. Yapısal ve morfolojik olarak karakterize edilen biyokütlenin OTC gideriminde optimum koşullar belirlenmiştir. Elde edilen verilere göre sulu çözeltilerden OTC giderimi için optumum pH değeri 7.0 bulunurken en yüksek biyosorpsiyon kapasitesi 7 ⁰C’de 300 mg/L başlangıç OTC derişimi için 286.639±2.248 mg/g bulunmuştur. Biyosorpsiyon prosesinin doğasının aydınlatılabilmesi için biyosorpsiyon izotermi ve biyosorpsiyon kinetiği gibi bazı fizikokimyasal parametreler de incelenmiştir. Elde edilen sonuçlara göre biyosorpsiyonun Freundlich izoterm modeline ve yalancı-ikinci dereceden kinetik modele uyumlu olduğu gözlenmiştir. Ayrıca biyosorbentin tekrar kullanımı da araştırılmıştır. Elde edilen sonuçlara göre L. deliciosus mantarından elde edilen biyokütlenin sulu çözeltilerden OTC gideriminde etkili bir biyosorbent olabileceği düşünülmektedir.

Destekleyen Kurum

Bursa Uludağ Üniversitesi BAP Birimi

Proje Numarası

FHIZ-2021-590

Teşekkür

Bu çalışma BUÜ BAP birimi tarafından FHIZ-2021-590 no’lu proje tarafından desteklenmiştir.

Kaynakça

  • Akar, T., Tosun, İ., Kaynak, Z., Kavas, E., Incirkus, G., Akar, S. T. (2009). Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. Journal of Hazardous Materials, 171(1-3), 865-871.
  • Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by canbonaceous materials. Chemical Engineering Journal, 283, 936,947.
  • Anayurt, R. A., Sari, A., Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151(1-3), 255-261.
  • Barbooti, M. M., Su, H., Punamiya, P., Sarkar, D. (2014). Oxytetracycline sorption onto Iraqi montmorillonite. International Journal of Environmental Science and Technology, 11, 69-76.
  • Bayramoğlu, G., ve Arica, M. Y. (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133– 140.
  • Bayramoğlu, G., Gursel, I., Tunali, Y., Arica, M. Y. (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresource Technology, 100, 2685-2691.
  • Carvalho Costa, A. W. M., Guerhardt, F., Ribeiro Junior, S. E. R., Canovas, G., Vanale, R. M., de Freitas Coelho, D., Ehrhardt, D. D., Rosa, J. M., Basile Tambourgi, E., Curvelo Santana, J. C. (2020). Biosorption of Cr(VI) using coconut fibers from agro-industrial waste magnetized using magnetite nanoparticles. Environmental Technology, 1–12.
  • Dror, A., Oran, P., Igal, G., Mamane, H. (2010). Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air and Soil Pollution, 209, 439-450.
  • Dubinin, M. M., ve Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • El-Gendy, M. M. A. A., Abdel-Moniem, S. M., Ammar, N. S., El-Bondkly, A. M. A. (2023). Bioremoval of heavy metal from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. BioMetals, 186, https://doi.org/10.1007/s10534-023-00520-x.
  • El-Naggar, N. E. -A., Hamouda, R. A., Mousa, I. E., Abdel-Hamid, M. S., Rabei, N. H. (2018). Biosorption optimization, characterization, immobilizationa and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Science and Reports, 8, 1-19.
  • Erşan, M. (2016). Removal of tetracycline using new biocomposites from aqueous solutions. Desalination and Water Treatment, 57 (21), 9982-9992.
  • Franco, D. S. P., Georgin, J., Drumm, F. C., Netto, M. S., Allasia, D., Oliveira, M. L. S., Dotto, G. L. (2020). Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environmental Science and Pollution Research International, 27, 11184–11194.
  • Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • Fu, B., Ge, C., Yue, L., Luo, J., Feng, D., Deng, H., Yu, H. (2016). Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. Bioresources, 11(4), 9017-9035.
  • Göçenoğlu Sarıkaya, A. (2022). Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(2), 1121-1138.
  • Göçenoğlu Sarıkaya, A., ve Osman, B. (2021). Tetracycline adsorption via dye-attached polymeric microbeads. Cumhuriyet Science Journal, 42(3), 638-648.
  • Göçenoğlu Sarıkaya, A. ve Erden, E. (2020). Direct Blue 2 tekstil boyar maddesinin Agaricus campestris biyokütlesi tarafından biyosorpsiyonu: Kinetik, izotermal ve termodinamik çalışmalar. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 258-273.
  • Guler, U. A. ve Sarioglu, M. (2014). Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. Journal of Environmental Health Science and Engineering, 12, 79.
  • Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. (1966). Pore- and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial Engineering and Chemical Fundamentals, 5, 212-223.
  • Harja, M. ve Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628-629, 36-43.
  • Ho, Y. S. ve McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451.
  • Isik, B., Ugraskan, V., Cankurtaran O. (2021). Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Separation Science and Technology, 57(6), 854-871.
  • Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xu, R., Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • Jureczko, M. ve Przystas, W. (2021). Removal of two cytostatic drugs: bleomycin and vincristine by White-rot fungi-a sorption study. Journal of Environmental Health Science and Engineering, 19, 651-662.
  • Kirova, G., Velkova, Z., Stoytcheva, M., Gochev, V. (2021). Tetracycline removal from model aqueous solutions by pretreated waste Streptomyces fradiae biomass. Biotechnology and Biotechnological Equipment, 35 (1), 953-963.
  • Kulkarni, R. M., Vidya Shetty, K., Srinikethan, G. (2019). Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology, 79, 888–894.
  • Kulshrestha, P., Giese, R. F., Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science and Technology, 38, 4097–4105.
  • Lagergren S. (1898). Zur theorie der sogenannten adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 25, 1.
  • Langmuir I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • Martinez-Olivas, A., Torres-Perez, J., Balderas-Hernandez, P., Reyes-Lopez, S. Y. (2020). Oxytetracycline sorption onto synthetized materials from hydroxyapatite and aluminosilicates. Water, Air, & Soil Pollution, 231, 264.
  • Medhi, H., Chowdhury, P. R., Baruah, P. D., Bhattacharyya, K. G. (2020). Kinetics of Aqueous Cu(II) Biosorption onto Thevetia peruviana Leaf Powder. ACS Omega, 5, 13489–13502.
  • Mirizadeh, S., Arni, S. Al., Elwaheidi, M., Salih, A. A. M., Converti, A., Casazza, A. A. (2023). Adsorption of tetracycline and ciprofloxacin from aqueous solution on raw date palm waste. Chemical Engineering and Technology, doi.org/10.1002/ceat.202300193.
  • Mostafapour, F. K., Yilmaz, M., Mahvi, A. H., Younesi, A., Ganji, F., Balarak, D. (2022). Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: equilibrium, kinetics and thermodynamics. Desalination and Water Treatment, 247, 216-228.
  • Nagy, B., Szilagyi, B., Majdik, C., Katona, G., Indolean, C., Maicaneanu, A. (2013). Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: equilibrium isotherm and kinetic studies. Environmental Progress & Sustainable Energy, 33(4), 1158-1170.
  • Özüdogru, Y. ve Merdivan, M. (2017). Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya University Journal of natural Sciences, 18 (2), 81-87.
  • Pan, X. D., Wu, P. G., Jiang, W., Ma, B. J. (2015). Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control, 52, 34–38.
  • Paria, K., Pyne, S., Chakraborty, S. K. (2022). Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere, 286(3), 131874.
  • Puchana-Rosero, M. J., Lima, E. C., Ortiz-Monsalve, S., Mella, B., da Costa, D., Poll, E., Gutterres, M. (2017). Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution. Environmental Science and Pollution Research, 24, 4200-4209.
  • Rakshit, S., Sarkar, D., Punamiya, P., Datta, R. (2014). Kinetics of oxytetracycline sorption on magnetite nanoparticles. International Journal of Environmental Science and Technology, 11, 1207-1214.
  • Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J. R., Rodríguez-Mozaz, S., Sabater, S. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment, 540, 250–259.
  • Sassman, S. A. ve Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science and Technology, 39(19), 7452-7459.
  • Singh, G. ve Dwivedi, S. K. (2022). Mechanistic, adsorption kinetics and confirmatory study of Congo red dye removal by native fungus Aspergillus niger. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-022-03369-1.
  • Song, Y., Sackey, E. A., Wang, H., Wang, H. (2019). Adsorption of oxytetracycline on kaolinite. PLoS ONE, 14(11), e0225335.
  • Taki, K., Gogoi, A., Mazumder, P., Bhattacharya, S. S., Kumar, M. (2019). Efficacy of vermitechnology integration with Upflow Anaerobic Sludge Blanket (UASB) and activated sludge for metal stabilization: A compliance study on fractionation and biosorption. Journal of Environmental Managment, 236, 603–612.
  • Torres, E. (2020). Biosorption: A review of the latest advances. Processes, 8(12), 1584.
  • Wan, Y., Bao, Y., Zhou, Q. (2010). Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80(7), 807-812.
  • Wang, Y., ve Huang, K. (2020). Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research International, 27, 33692–33702.
  • Wang, Z., Muhammad, Y., Tang, R., Lu, C., Yu, S., Song, R., Tong, Z., Han, B., Zhang, H. (2021). Dually organic modified bentonite with enhanced adsorption and desorption of tetracycline and ciprofloxacine. Separation and Purification Technology, 274, 119059.
  • Wei, Z., Hou, C., Gao, Z., Wang, L., Yang, C., Li, Y., Liu, K., Sun, Y. (2023). Preparation of biochar with developed mesoporous structure from poplar leaf activated by KHCO3 and its efficient adsorption of oxytetracycline hydrochloride. Molecules, 28(7), 3188.
  • Yeşilova, E., Osman, B., Kara, A., Tümay Özer, E. (2018). Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption. Separation and Purification Technology, 200, 155-163.
  • Zhang, J., Wang, P., Zhang, Z., Xiang, P., Xia, S. (2020). Biosorption Characteristics of Hg(II) from Aqueous Solution by the Biopolymer from Waste Activated Sludge. International Journal of Environmental Research and Public Health, 17, 1488.
  • Zhang, L., Yao, L., Ye, L., Long, B., Dai, Y., Ding, Y. (2020). Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution. Journal of Environmental Chemical Engineering, 8(6), 2020, 104562.
  • Zhou, H., Jiao, G., Li, X., Gao, C., Zhang, Y., Hashan, D., Liu, J., She, D. (2023). High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: adsorption behavior and mechanism. International Journal of Biological Macromolecules, 234, 123689.

Removal of Oxytetracycline from Aqueous Solutions by Lactarius deliciosus Biomass

Yıl 2023, , 1135 - 1152, 15.09.2023
https://doi.org/10.31466/kfbd.1300792

Öz

With the increasing population and developing technology, the use of antibiotics for therapeutic purposes is quite high worldwide. Accordingly, antibiotic residues, which are excreted without being metabolized in the body, are mixed into wastewater and become a major ecological problem. In this study, the removal of oxytetracycline (OTC), one of the tetracycline group antibiotics, from aqueous solutions was investigated with biomass obtained from Lactarius deliciosus, an edible mushroom species. The optimum conditions for OTC removal of the biomass characterized structurally and morphologically were determined. According to the obtained data, the optimum pH value for OTC removal from aqueous solutions was found to be 7.0 and the highest biosorption capacity was found to be 286.639±2.248 mg/g for an initial OTC concentration of 300 mg/L at 7 ⁰C. In order to elucidate the nature of the biosorption process, some physicochemical parameters such as biosorption isotherm and biosorption kinetics were also investigated. According to the results obtained, it was observed that biosorption was in accordance with Freundlich isotherm model and pseudo-second-order kinetic model. In addition, the reuse of the biosorbent was also investigated. According to the results obtained, biomass obtained from L. deliciosus mushroom is considered to be an effective biosorbent for OTC removal from aqueous solutions.

Proje Numarası

FHIZ-2021-590

Kaynakça

  • Akar, T., Tosun, İ., Kaynak, Z., Kavas, E., Incirkus, G., Akar, S. T. (2009). Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. Journal of Hazardous Materials, 171(1-3), 865-871.
  • Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by canbonaceous materials. Chemical Engineering Journal, 283, 936,947.
  • Anayurt, R. A., Sari, A., Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151(1-3), 255-261.
  • Barbooti, M. M., Su, H., Punamiya, P., Sarkar, D. (2014). Oxytetracycline sorption onto Iraqi montmorillonite. International Journal of Environmental Science and Technology, 11, 69-76.
  • Bayramoğlu, G., ve Arica, M. Y. (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133– 140.
  • Bayramoğlu, G., Gursel, I., Tunali, Y., Arica, M. Y. (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresource Technology, 100, 2685-2691.
  • Carvalho Costa, A. W. M., Guerhardt, F., Ribeiro Junior, S. E. R., Canovas, G., Vanale, R. M., de Freitas Coelho, D., Ehrhardt, D. D., Rosa, J. M., Basile Tambourgi, E., Curvelo Santana, J. C. (2020). Biosorption of Cr(VI) using coconut fibers from agro-industrial waste magnetized using magnetite nanoparticles. Environmental Technology, 1–12.
  • Dror, A., Oran, P., Igal, G., Mamane, H. (2010). Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air and Soil Pollution, 209, 439-450.
  • Dubinin, M. M., ve Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • El-Gendy, M. M. A. A., Abdel-Moniem, S. M., Ammar, N. S., El-Bondkly, A. M. A. (2023). Bioremoval of heavy metal from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. BioMetals, 186, https://doi.org/10.1007/s10534-023-00520-x.
  • El-Naggar, N. E. -A., Hamouda, R. A., Mousa, I. E., Abdel-Hamid, M. S., Rabei, N. H. (2018). Biosorption optimization, characterization, immobilizationa and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Science and Reports, 8, 1-19.
  • Erşan, M. (2016). Removal of tetracycline using new biocomposites from aqueous solutions. Desalination and Water Treatment, 57 (21), 9982-9992.
  • Franco, D. S. P., Georgin, J., Drumm, F. C., Netto, M. S., Allasia, D., Oliveira, M. L. S., Dotto, G. L. (2020). Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environmental Science and Pollution Research International, 27, 11184–11194.
  • Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • Fu, B., Ge, C., Yue, L., Luo, J., Feng, D., Deng, H., Yu, H. (2016). Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. Bioresources, 11(4), 9017-9035.
  • Göçenoğlu Sarıkaya, A. (2022). Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(2), 1121-1138.
  • Göçenoğlu Sarıkaya, A., ve Osman, B. (2021). Tetracycline adsorption via dye-attached polymeric microbeads. Cumhuriyet Science Journal, 42(3), 638-648.
  • Göçenoğlu Sarıkaya, A. ve Erden, E. (2020). Direct Blue 2 tekstil boyar maddesinin Agaricus campestris biyokütlesi tarafından biyosorpsiyonu: Kinetik, izotermal ve termodinamik çalışmalar. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 258-273.
  • Guler, U. A. ve Sarioglu, M. (2014). Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. Journal of Environmental Health Science and Engineering, 12, 79.
  • Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. (1966). Pore- and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial Engineering and Chemical Fundamentals, 5, 212-223.
  • Harja, M. ve Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628-629, 36-43.
  • Ho, Y. S. ve McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451.
  • Isik, B., Ugraskan, V., Cankurtaran O. (2021). Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Separation Science and Technology, 57(6), 854-871.
  • Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xu, R., Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • Jureczko, M. ve Przystas, W. (2021). Removal of two cytostatic drugs: bleomycin and vincristine by White-rot fungi-a sorption study. Journal of Environmental Health Science and Engineering, 19, 651-662.
  • Kirova, G., Velkova, Z., Stoytcheva, M., Gochev, V. (2021). Tetracycline removal from model aqueous solutions by pretreated waste Streptomyces fradiae biomass. Biotechnology and Biotechnological Equipment, 35 (1), 953-963.
  • Kulkarni, R. M., Vidya Shetty, K., Srinikethan, G. (2019). Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology, 79, 888–894.
  • Kulshrestha, P., Giese, R. F., Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science and Technology, 38, 4097–4105.
  • Lagergren S. (1898). Zur theorie der sogenannten adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 25, 1.
  • Langmuir I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • Martinez-Olivas, A., Torres-Perez, J., Balderas-Hernandez, P., Reyes-Lopez, S. Y. (2020). Oxytetracycline sorption onto synthetized materials from hydroxyapatite and aluminosilicates. Water, Air, & Soil Pollution, 231, 264.
  • Medhi, H., Chowdhury, P. R., Baruah, P. D., Bhattacharyya, K. G. (2020). Kinetics of Aqueous Cu(II) Biosorption onto Thevetia peruviana Leaf Powder. ACS Omega, 5, 13489–13502.
  • Mirizadeh, S., Arni, S. Al., Elwaheidi, M., Salih, A. A. M., Converti, A., Casazza, A. A. (2023). Adsorption of tetracycline and ciprofloxacin from aqueous solution on raw date palm waste. Chemical Engineering and Technology, doi.org/10.1002/ceat.202300193.
  • Mostafapour, F. K., Yilmaz, M., Mahvi, A. H., Younesi, A., Ganji, F., Balarak, D. (2022). Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: equilibrium, kinetics and thermodynamics. Desalination and Water Treatment, 247, 216-228.
  • Nagy, B., Szilagyi, B., Majdik, C., Katona, G., Indolean, C., Maicaneanu, A. (2013). Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: equilibrium isotherm and kinetic studies. Environmental Progress & Sustainable Energy, 33(4), 1158-1170.
  • Özüdogru, Y. ve Merdivan, M. (2017). Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya University Journal of natural Sciences, 18 (2), 81-87.
  • Pan, X. D., Wu, P. G., Jiang, W., Ma, B. J. (2015). Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control, 52, 34–38.
  • Paria, K., Pyne, S., Chakraborty, S. K. (2022). Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere, 286(3), 131874.
  • Puchana-Rosero, M. J., Lima, E. C., Ortiz-Monsalve, S., Mella, B., da Costa, D., Poll, E., Gutterres, M. (2017). Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution. Environmental Science and Pollution Research, 24, 4200-4209.
  • Rakshit, S., Sarkar, D., Punamiya, P., Datta, R. (2014). Kinetics of oxytetracycline sorption on magnetite nanoparticles. International Journal of Environmental Science and Technology, 11, 1207-1214.
  • Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J. R., Rodríguez-Mozaz, S., Sabater, S. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment, 540, 250–259.
  • Sassman, S. A. ve Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science and Technology, 39(19), 7452-7459.
  • Singh, G. ve Dwivedi, S. K. (2022). Mechanistic, adsorption kinetics and confirmatory study of Congo red dye removal by native fungus Aspergillus niger. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-022-03369-1.
  • Song, Y., Sackey, E. A., Wang, H., Wang, H. (2019). Adsorption of oxytetracycline on kaolinite. PLoS ONE, 14(11), e0225335.
  • Taki, K., Gogoi, A., Mazumder, P., Bhattacharya, S. S., Kumar, M. (2019). Efficacy of vermitechnology integration with Upflow Anaerobic Sludge Blanket (UASB) and activated sludge for metal stabilization: A compliance study on fractionation and biosorption. Journal of Environmental Managment, 236, 603–612.
  • Torres, E. (2020). Biosorption: A review of the latest advances. Processes, 8(12), 1584.
  • Wan, Y., Bao, Y., Zhou, Q. (2010). Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80(7), 807-812.
  • Wang, Y., ve Huang, K. (2020). Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research International, 27, 33692–33702.
  • Wang, Z., Muhammad, Y., Tang, R., Lu, C., Yu, S., Song, R., Tong, Z., Han, B., Zhang, H. (2021). Dually organic modified bentonite with enhanced adsorption and desorption of tetracycline and ciprofloxacine. Separation and Purification Technology, 274, 119059.
  • Wei, Z., Hou, C., Gao, Z., Wang, L., Yang, C., Li, Y., Liu, K., Sun, Y. (2023). Preparation of biochar with developed mesoporous structure from poplar leaf activated by KHCO3 and its efficient adsorption of oxytetracycline hydrochloride. Molecules, 28(7), 3188.
  • Yeşilova, E., Osman, B., Kara, A., Tümay Özer, E. (2018). Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption. Separation and Purification Technology, 200, 155-163.
  • Zhang, J., Wang, P., Zhang, Z., Xiang, P., Xia, S. (2020). Biosorption Characteristics of Hg(II) from Aqueous Solution by the Biopolymer from Waste Activated Sludge. International Journal of Environmental Research and Public Health, 17, 1488.
  • Zhang, L., Yao, L., Ye, L., Long, B., Dai, Y., Ding, Y. (2020). Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution. Journal of Environmental Chemical Engineering, 8(6), 2020, 104562.
  • Zhou, H., Jiao, G., Li, X., Gao, C., Zhang, Y., Hashan, D., Liu, J., She, D. (2023). High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: adsorption behavior and mechanism. International Journal of Biological Macromolecules, 234, 123689.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Aslı Göçenoğlu Sarıkaya 0000-0002-7161-7003

Bilgen Osman 0000-0001-8406-149X

Elif Tümay Özer 0000-0002-5225-0146

Proje Numarası FHIZ-2021-590
Yayımlanma Tarihi 15 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Göçenoğlu Sarıkaya, A., Osman, B., & Tümay Özer, E. (2023). Lactarius deliciosus Biyokütlesi ile Sulu Çözeltilerden Oksitetrasiklin Giderimi. Karadeniz Fen Bilimleri Dergisi, 13(3), 1135-1152. https://doi.org/10.31466/kfbd.1300792