Üre-Tiyoüre Temelli Şekerlerin Sentezi ve Enantiyoseçici Michael Katılmasında Organokatalitik Etkilerinin İncelenmesi
Yıl 2024,
, 38 - 49, 15.03.2024
Özer Işılar
,
Adnan Bulut
Öz
Glukofuranoz amin ve galaktopiranoz aminden üre ve tiyoüre temelli yeni organokatalizörlerin (7-10) sentezi ve karakterizasyonu yapılmıştır. Bu bileşikler, farklı diketonlara trans-ß-nitrostiren’e enantiyoseçici Michael katılmasında organokatalizör olarak test edilmiştir. Sıcaklık, çözücü ve katkı maddeleri gibi parametreler ile yapılan optimizasyon sonucunda organokatalizörlerin %99 verim ve %11 enantiyomerik aşırılık ile katalizlediği tespit edilmiştir.
Destekleyen Kurum
Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Teşekkür
Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2017/060 numaralı araştırma projesiyle desteklenmiştir.
Kaynakça
- Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877.
- Blaser, H. U. (1992). The chiral pool as a source of enantioselective catalysts and auxiliaries. Chemical Reviews, 92(5), 935–952.
- Boysen, M. M. K. (2007). Carbohydrates as Synthetic Tools in Organic Chemistry. Chemistry - A European Journal, 13(31), 8648–8659.
- Casiraghi, G., Zanardi, F., Rassu, G., & Spanu, P. (1995). Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids-With a Focus on Recent Syntheses Drawing from the Chiral Pool. Chemical Reviews, 95(6), 1677–1716.
- Dondoni, A., & Massi, A. (2008). Asymmetric Organocatalysis: From Infancy to Adolescence. Angewandte Chemie International Edition, 47(25), 4638–4660.
- Enders, D., & Chow, S. (2006). Organocatalytic Asymmetric Michael Addition of 2,2-Dimethyl-1,3-dioxan-5-one to Nitro Alkenes Employing Proline-Based Catalysts. European Journal of Organic Chemistry, 2006(20), 4578–4584.
- Enders, D., Grondal, C., & Hüttl, M. R. M. (2007). Asymmetric Organocatalytic Domino Reactions. Angewandte Chemie International Edition, 46(10), 1570–1581.
- Faísca Phillips, A. M. (2014). Applications of Carbohydrate-Based Organocatalysts in Enantioselective Synthesis. European Journal of Organic Chemistry, 2014(33), 7291–7303.
- Gao, P., Wang, C., Wu, Y., Zhou, Z., & Tang, C. (2008). Sugar-Derived Bifunctional Thiourea Organocatalyzed Asymmetric Michael Addition of Acetylacetone to Nitroolefins. European Journal of Organic Chemistry, 2008(27), 4563–4566.
- Işılar, Ö., Bulut, A., Sahin Yaglioglu, A., Demirtaş, İ., Arat, E., & Türk, M. (2020). Synthesis and biological evaluation of novel urea, thiourea and squaramide diastereomers possessing sugar backbone. Carbohydrate Research, 492, 107991.
- Liu, K., Cui, H.-F., Nie, J., Dong, K.-Y., Li, X.-J., & Ma, J.-A. (2007). Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters, 9(5), 923–925.
- Lu, A., Gao, P., Wu, Y., Wang, Y., Zhou, Z., & Tang, C. (2009). Highly enantio- and diastereoselective Michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst. Organic & Biomolecular Chemistry, 7(15), 3141.
- Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolylsulfonyl)-.alpha.-D-glucofuranose. The Journal of Organic Chemistry, 34(12), 3819–3822.
- Okino, T., Hoashi, Y., & Takemoto, Y. (2003). Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society, 125(42), 12672–12673.
- Richardson, A. C. (1972). Amino Sugars via Reduction of Azides. In General Carbohydrate Method (pp. 218–224). Elsevier.
- Singh, S. K., Mishra, N., Kumar, S., Jaiswal, M. K., & Tiwari, V. K. (2022). Growing Impact of Carbohydrate‐Based Organocatalysts. ChemistrySelect, 7(19).
- Streicher, B., & Wünsch, B. (2003). Synthesis of amino-substituted hexo- and heptopyranoses from d-galactose. Carbohydrate Research, 338(22), 2375–2385.
- Tsogoeva, S. B. (2007). Recent Advances in Asymmetric Organocatalytic 1,4‐Conjugate Additions. European Journal of Organic Chemistry, 2007(11), 1701–1716.
- Wojaczyńska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules, 26(23), 7291.
- Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, 35, 4481.
Synthesis of Urea-Thiourea Based Sugars and Investigation of Organocatalytic Effects in Enantioselective Michael Addition
Yıl 2024,
, 38 - 49, 15.03.2024
Özer Işılar
,
Adnan Bulut
Öz
Synthesis and characterization of urea and thiourea based novel organocatalysts (7-10) from glucofuranose amine and galactopyranose amine were obtained. These compounds were tested as organocatalyst for the enantioselective Michael addition of various diketones to trans-ß-nitrostyrene. As a result of optimization parameters such as temperature, solvent and additives, the organocatalysts were catalyzed with 99% yield and 11% enantiomeric excess.
Kaynakça
- Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877.
- Blaser, H. U. (1992). The chiral pool as a source of enantioselective catalysts and auxiliaries. Chemical Reviews, 92(5), 935–952.
- Boysen, M. M. K. (2007). Carbohydrates as Synthetic Tools in Organic Chemistry. Chemistry - A European Journal, 13(31), 8648–8659.
- Casiraghi, G., Zanardi, F., Rassu, G., & Spanu, P. (1995). Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids-With a Focus on Recent Syntheses Drawing from the Chiral Pool. Chemical Reviews, 95(6), 1677–1716.
- Dondoni, A., & Massi, A. (2008). Asymmetric Organocatalysis: From Infancy to Adolescence. Angewandte Chemie International Edition, 47(25), 4638–4660.
- Enders, D., & Chow, S. (2006). Organocatalytic Asymmetric Michael Addition of 2,2-Dimethyl-1,3-dioxan-5-one to Nitro Alkenes Employing Proline-Based Catalysts. European Journal of Organic Chemistry, 2006(20), 4578–4584.
- Enders, D., Grondal, C., & Hüttl, M. R. M. (2007). Asymmetric Organocatalytic Domino Reactions. Angewandte Chemie International Edition, 46(10), 1570–1581.
- Faísca Phillips, A. M. (2014). Applications of Carbohydrate-Based Organocatalysts in Enantioselective Synthesis. European Journal of Organic Chemistry, 2014(33), 7291–7303.
- Gao, P., Wang, C., Wu, Y., Zhou, Z., & Tang, C. (2008). Sugar-Derived Bifunctional Thiourea Organocatalyzed Asymmetric Michael Addition of Acetylacetone to Nitroolefins. European Journal of Organic Chemistry, 2008(27), 4563–4566.
- Işılar, Ö., Bulut, A., Sahin Yaglioglu, A., Demirtaş, İ., Arat, E., & Türk, M. (2020). Synthesis and biological evaluation of novel urea, thiourea and squaramide diastereomers possessing sugar backbone. Carbohydrate Research, 492, 107991.
- Liu, K., Cui, H.-F., Nie, J., Dong, K.-Y., Li, X.-J., & Ma, J.-A. (2007). Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters, 9(5), 923–925.
- Lu, A., Gao, P., Wu, Y., Wang, Y., Zhou, Z., & Tang, C. (2009). Highly enantio- and diastereoselective Michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst. Organic & Biomolecular Chemistry, 7(15), 3141.
- Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolylsulfonyl)-.alpha.-D-glucofuranose. The Journal of Organic Chemistry, 34(12), 3819–3822.
- Okino, T., Hoashi, Y., & Takemoto, Y. (2003). Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society, 125(42), 12672–12673.
- Richardson, A. C. (1972). Amino Sugars via Reduction of Azides. In General Carbohydrate Method (pp. 218–224). Elsevier.
- Singh, S. K., Mishra, N., Kumar, S., Jaiswal, M. K., & Tiwari, V. K. (2022). Growing Impact of Carbohydrate‐Based Organocatalysts. ChemistrySelect, 7(19).
- Streicher, B., & Wünsch, B. (2003). Synthesis of amino-substituted hexo- and heptopyranoses from d-galactose. Carbohydrate Research, 338(22), 2375–2385.
- Tsogoeva, S. B. (2007). Recent Advances in Asymmetric Organocatalytic 1,4‐Conjugate Additions. European Journal of Organic Chemistry, 2007(11), 1701–1716.
- Wojaczyńska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules, 26(23), 7291.
- Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, 35, 4481.