Araştırma Makalesi
BibTex RIS Kaynak Göster

Peyniraltı Suyunun Kompostlaştırmada Karbon/Azot Oranına Etkisinin İncelenmesi

Yıl 2024, , 1542 - 1551, 15.09.2024
https://doi.org/10.31466/kfbd.1489835

Öz

Peyniraltı suyu, peynir üretiminden kaynaklanan ve süt endüstrisindeki en kontamine atıksudur. Son yıllarda, peyniraltı suyunun farklı kullanım amaçları üzerine çalışmalar yoğunlaşmıştır. Bu çalışmada, kümes hayvanları atıklarının kompostlaştırılmasında peyniraltı suyunun karbon/azot (C/N) oranı üzerine etkisi incelenmiştir. Kümes hayvanı atıkları reaktör (in-vessel) kompostlaştırma sistemlerine yerleştirilmiş ve %1, %3 ve %5 oranlarında peyniraltı suyu ilave edilerek, peyniraltı suyu ilave edilmemiş kontrol reaktörü ile proses süresince toplam organik karbon (TOC) ve toplam azot (TN) içerikleri haftalık olarak izlenmiştir. Kompostlaştırma prosesi başlangıcında, kontrol reaktöründe C/N oranı 14.82 olarak belirlenmiştir. Kümes hayvanı atıklarına peyniraltı suyu ilavesi C/N oranının artışını sağlamış ve proses verimini artırmıştır.

Etik Beyan

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Ondokuz Mayıs Üniversitesi

Proje Numarası

PYO.MUH.1904.23.012

Teşekkür

Bu çalışma Ondokuz Mayıs Üniversitesi’nin PYO.MUH.1904.23.012 nolu Bilimsel Araştırma Projesi ile desteklenmiş olup, desteğinden dolayı Ondokuz Mayıs Üniversitesi'ne teşekkür ederiz.

Kaynakça

  • Aycan Dümenci, N., Cagcag Yolcu, O., Aydın Temel, F., Turan, N.G., 2021. Identifying the maturity of co-compost of olive mill waste and natural mineral materials: Modelling via ANN and multi-objective optimization. Bioresour. Technol. 338. https://doi.org/10.1016/j.biortech.2021.125516
  • Aydın Temel, F., 2023. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresour. Technol. 373, 128748. https://doi.org/10.1016/j.biortech.2023.128748
  • Aydın Temel, F., Cagcag Yolcu, O., Turan, N.G., 2023. Artificial intelligence and machine learning approaches in composting process : A review. Bioresour. Technol. 370, 128539. https://doi.org/10.1016/j.biortech.2022.128539
  • Bayındır, Y., Cagcag Yolcu, O., Aydın Temel, F., Turan, N.G., 2022. Evaluation of a cascade artificial neural network for modeling and optimization of process parameters in co-composting of cattle manure and municipal solid waste. J. Environ. Manage. 318, 115496. https://doi.org/10.1016/j.jenvman.2022.115496
  • Cáceres, R., Malińska, K., Marfà, O., 2018. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A., 2018. Composting of food wastes: Status and challenges. Bioresour. Technol. 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • Chan, M.T., Selvam, A., Wong, J.W.C., 2016. Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresour. Technol. 200, 838–844. https://doi.org/10.1016/j.biortech.2015.10.093
  • Cui, E., Wu, Y., Zuo, Y., Chen, H., 2016. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour. Technol. 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030
  • Epstein, E., 1997. The Science of Composting. CRC Press, Florida.
  • Ferraz, A.D.N., Fuentes, L., de la Sovera, V., Bovio-Winkler, P., Eng, F., García, M., Etchebehere, C., 2021. Potentialities of biotechnological recovery of hydrogen and short- and medium-chain organic acids from the co-fermentation of cheese whey and Yerba Mate (Ilex paraguariensis) waste. Ind. Crops Prod. 171. https://doi.org/10.1016/j.indcrop.2021.113897
  • Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., Shen, Y., 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099
  • Liu, T., Awasthi, S.K., Qin, S., Liu, H., Awasthi, M.K., Zhou, Y., Jiao, M., Pandey, A., Varjani, S., Zhang, Z., 2021. Conversion food waste and sawdust into compost employing black soldier fly larvae (diptera: Stratiomyidae) under the optimized condition. Chemosphere 272, 129931. https://doi.org/10.1016/j.chemosphere.2021.129931
  • Loow, Y.L., New, E.K., Yang, G.H., Ang, L.Y., Foo, L.Y.W., Wu, T.Y., 2017. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24, 3591–3618. https://doi.org/10.1007/s10570-017-1358-y
  • Lu, Y., Gu, W., Xu, P., Xie, K., Li, X., Sun, L., Wu, H., Shi, C., Wang, D., 2018. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting. Waste Manag. 80, 10–16. https://doi.org/10.1016/j.wasman.2018.08.050
  • Manu, M.K., Li, D., Liwen, L., Jun, Z., Varjani, S., Wong, J.W.C., 2021. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 334, 125032. https://doi.org/10.1016/j.biortech.2021.125032
  • Ravindran, B., Awasthi, M.K., Karmegam, N., Chang, S.W., Chaudhary, D.K., Selvam, A., Nguyen, D.D., Rahman Milon, A., Munuswamy-Ramanujam, G., 2022. Co-composting of food waste and swine manure augmenting biochar and salts: Nutrient dynamics, gaseous emissions and microbial activity. Bioresour. Technol. 344, 126300. https://doi.org/10.1016/j.biortech.2021.126300
  • Resmi Gazete, 2015. Kompost Tebliği, Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Sayı: 29286.
  • Rynk, R., Schwarz, M., 2022. Compost feedstocks, in: The Composting Handbook: A How-to and Why Manual for Farm, Municipal, Institutional and Commercial Composters. Elsevier, p. 935.
  • Said-Pullicino, D., Erriquens, F.G., Gigliotti, G., 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98, 1822–1831. https://doi.org/10.1016/j.biortech.2006.06.018
  • Sanchez-Monedero, M.A., Cayuela, M.L., Roig, A., Jindo, K., Mondini, C., Bolan, N., 2018. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 247, 1155–1164. https://doi.org/10.1016/j.biortech.2017.09.193
  • Shan, G., Li, W., Gao, Y., Tan, W., Xi, B., 2021. Additives for reducing nitrogen loss during composting: A review. J. Clean. Prod. 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308
  • Soltani, M., Saremnezhad, S., Faraji, A.R., Hayaloglu, A.A., 2022. Perspectives and recent innovations on white cheese produced by conventional methods or ultrafiltration technique. Int. Dairy J. 125, 105232. https://doi.org/10.1016/j.idairyj.2021.105232
  • Stehouwer, R., Cooperband, L., Rynk, R., 2021. Compost characteristics and quality soils, in: The Composting Handbook. pp. 737–775.
  • Wang, M., Awasthi, M.K., Wang, Q., Chen, H., Ren, X., Zhao, J., Li, R., Zhang, Z., 2017. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis. Bioresour. Technol. 243, 520–527. https://doi.org/10.1016/j.biortech.2017.06.158
  • Wang, S., Zeng, Y., 2018. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 248, 13–19. https://doi.org/10.1016/j.biortech.2017.07.050
  • Wang, N., Ren, L., Zhang, J., Kumar Awasthi, M., Yan, B., Zhang, L., Wan, F., Luo, L., Huang, H., Zhao, K., 2022. Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments. Bioresour. Technol. 345, 126489. https://doi.org/10.1016/j.biortech.2021.126489
  • Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y., 2015. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 33, 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002
  • Yılmaz, E.C., Aydın Temel, F., Cagcag Yolcu, O., Turan, N.G., 2022. Modeling and optimization of process parameters in co-composting of tea waste and food waste : Radial basis function neural networks and genetic algorithm. Bioresour. Technol. 363, 127910. https://doi.org/10.1016/j.biortech.2022.127910
  • Yu, H., Xie, B., Khan, R., Shen, G., 2019. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 271, 228–235. https://doi.org/10.1016/j.biortech.2018.09.088
  • Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F.C., Liu, T., Zhang, Z., Kumar Awasthi, M., 2022. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 360, 127591. https://doi.org/10.1016/j.biortech.2022.127591

Investigation of the Effect of Whey on Carbon/Nitrogen Ratio in Composting

Yıl 2024, , 1542 - 1551, 15.09.2024
https://doi.org/10.31466/kfbd.1489835

Öz

Whey is the most contaminated wastewater in the dairy industry, originating from cheese production. In recent years, studies on different uses of whey have been concentrated. In this study, the effect of whey on the carbon/nitrogen (C/N) ratio in the composting of poultry waste was examined. Poultry wastes were placed in reactor (in-vessel) composting systems and whey was added at the rates of 1%, 3% and 5%, and the total organic carbon (TOC) and total nitrogen (TN) contents were determined weekly during the process with the control reactor without added whey. was observed as. At the beginning of the composting process, the C/N ratio was determined as 14.82 in the control reactor. Addition of whey to poultry waste increased the C/N ratio and increased the process efficiency.

Proje Numarası

PYO.MUH.1904.23.012

Kaynakça

  • Aycan Dümenci, N., Cagcag Yolcu, O., Aydın Temel, F., Turan, N.G., 2021. Identifying the maturity of co-compost of olive mill waste and natural mineral materials: Modelling via ANN and multi-objective optimization. Bioresour. Technol. 338. https://doi.org/10.1016/j.biortech.2021.125516
  • Aydın Temel, F., 2023. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresour. Technol. 373, 128748. https://doi.org/10.1016/j.biortech.2023.128748
  • Aydın Temel, F., Cagcag Yolcu, O., Turan, N.G., 2023. Artificial intelligence and machine learning approaches in composting process : A review. Bioresour. Technol. 370, 128539. https://doi.org/10.1016/j.biortech.2022.128539
  • Bayındır, Y., Cagcag Yolcu, O., Aydın Temel, F., Turan, N.G., 2022. Evaluation of a cascade artificial neural network for modeling and optimization of process parameters in co-composting of cattle manure and municipal solid waste. J. Environ. Manage. 318, 115496. https://doi.org/10.1016/j.jenvman.2022.115496
  • Cáceres, R., Malińska, K., Marfà, O., 2018. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A., 2018. Composting of food wastes: Status and challenges. Bioresour. Technol. 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • Chan, M.T., Selvam, A., Wong, J.W.C., 2016. Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresour. Technol. 200, 838–844. https://doi.org/10.1016/j.biortech.2015.10.093
  • Cui, E., Wu, Y., Zuo, Y., Chen, H., 2016. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour. Technol. 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030
  • Epstein, E., 1997. The Science of Composting. CRC Press, Florida.
  • Ferraz, A.D.N., Fuentes, L., de la Sovera, V., Bovio-Winkler, P., Eng, F., García, M., Etchebehere, C., 2021. Potentialities of biotechnological recovery of hydrogen and short- and medium-chain organic acids from the co-fermentation of cheese whey and Yerba Mate (Ilex paraguariensis) waste. Ind. Crops Prod. 171. https://doi.org/10.1016/j.indcrop.2021.113897
  • Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., Shen, Y., 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099
  • Liu, T., Awasthi, S.K., Qin, S., Liu, H., Awasthi, M.K., Zhou, Y., Jiao, M., Pandey, A., Varjani, S., Zhang, Z., 2021. Conversion food waste and sawdust into compost employing black soldier fly larvae (diptera: Stratiomyidae) under the optimized condition. Chemosphere 272, 129931. https://doi.org/10.1016/j.chemosphere.2021.129931
  • Loow, Y.L., New, E.K., Yang, G.H., Ang, L.Y., Foo, L.Y.W., Wu, T.Y., 2017. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24, 3591–3618. https://doi.org/10.1007/s10570-017-1358-y
  • Lu, Y., Gu, W., Xu, P., Xie, K., Li, X., Sun, L., Wu, H., Shi, C., Wang, D., 2018. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting. Waste Manag. 80, 10–16. https://doi.org/10.1016/j.wasman.2018.08.050
  • Manu, M.K., Li, D., Liwen, L., Jun, Z., Varjani, S., Wong, J.W.C., 2021. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 334, 125032. https://doi.org/10.1016/j.biortech.2021.125032
  • Ravindran, B., Awasthi, M.K., Karmegam, N., Chang, S.W., Chaudhary, D.K., Selvam, A., Nguyen, D.D., Rahman Milon, A., Munuswamy-Ramanujam, G., 2022. Co-composting of food waste and swine manure augmenting biochar and salts: Nutrient dynamics, gaseous emissions and microbial activity. Bioresour. Technol. 344, 126300. https://doi.org/10.1016/j.biortech.2021.126300
  • Resmi Gazete, 2015. Kompost Tebliği, Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Sayı: 29286.
  • Rynk, R., Schwarz, M., 2022. Compost feedstocks, in: The Composting Handbook: A How-to and Why Manual for Farm, Municipal, Institutional and Commercial Composters. Elsevier, p. 935.
  • Said-Pullicino, D., Erriquens, F.G., Gigliotti, G., 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98, 1822–1831. https://doi.org/10.1016/j.biortech.2006.06.018
  • Sanchez-Monedero, M.A., Cayuela, M.L., Roig, A., Jindo, K., Mondini, C., Bolan, N., 2018. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 247, 1155–1164. https://doi.org/10.1016/j.biortech.2017.09.193
  • Shan, G., Li, W., Gao, Y., Tan, W., Xi, B., 2021. Additives for reducing nitrogen loss during composting: A review. J. Clean. Prod. 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308
  • Soltani, M., Saremnezhad, S., Faraji, A.R., Hayaloglu, A.A., 2022. Perspectives and recent innovations on white cheese produced by conventional methods or ultrafiltration technique. Int. Dairy J. 125, 105232. https://doi.org/10.1016/j.idairyj.2021.105232
  • Stehouwer, R., Cooperband, L., Rynk, R., 2021. Compost characteristics and quality soils, in: The Composting Handbook. pp. 737–775.
  • Wang, M., Awasthi, M.K., Wang, Q., Chen, H., Ren, X., Zhao, J., Li, R., Zhang, Z., 2017. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis. Bioresour. Technol. 243, 520–527. https://doi.org/10.1016/j.biortech.2017.06.158
  • Wang, S., Zeng, Y., 2018. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 248, 13–19. https://doi.org/10.1016/j.biortech.2017.07.050
  • Wang, N., Ren, L., Zhang, J., Kumar Awasthi, M., Yan, B., Zhang, L., Wan, F., Luo, L., Huang, H., Zhao, K., 2022. Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments. Bioresour. Technol. 345, 126489. https://doi.org/10.1016/j.biortech.2021.126489
  • Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y., 2015. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 33, 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002
  • Yılmaz, E.C., Aydın Temel, F., Cagcag Yolcu, O., Turan, N.G., 2022. Modeling and optimization of process parameters in co-composting of tea waste and food waste : Radial basis function neural networks and genetic algorithm. Bioresour. Technol. 363, 127910. https://doi.org/10.1016/j.biortech.2022.127910
  • Yu, H., Xie, B., Khan, R., Shen, G., 2019. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 271, 228–235. https://doi.org/10.1016/j.biortech.2018.09.088
  • Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F.C., Liu, T., Zhang, Z., Kumar Awasthi, M., 2022. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 360, 127591. https://doi.org/10.1016/j.biortech.2022.127591
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm
Bölüm Makaleler
Yazarlar

Cem Şahin Bu kişi benim 0000-0002-0895-7304

Nurdan Gamze Turan 0000-0001-6500-6188

Proje Numarası PYO.MUH.1904.23.012
Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 25 Mayıs 2024
Kabul Tarihi 21 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Şahin, C., & Turan, N. G. (2024). Peyniraltı Suyunun Kompostlaştırmada Karbon/Azot Oranına Etkisinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 14(3), 1542-1551. https://doi.org/10.31466/kfbd.1489835