Araştırma Makalesi
BibTex RIS Kaynak Göster

Dolgu ile İyileştirilen Zeminlerde Dolgu ve Temel Parametrelerinin Taşıma Gücüne Etkilerinin Araştırılması

Yıl 2021, , 629 - 647, 15.12.2021
https://doi.org/10.31466/kfbd.979559

Öz

Tabakalı zeminlerin nihai taşıma kapasitesinin belirlenmesine yönelik birçok teorik yaklaşım ortaya konulsa da zeminlerin karmaşık yapılarını basitleştirmek için yapılan kabuller özellikle tabakalı zeminlerin taşıma kapasitelerinin doğru olarak belirlenmesini zorlaştırmaktadır. Bu sebeple, zeminlerin davranışının belirlenmesinde sonlu eleman yöntemi kullanılması son yıllarda popülerleşmektedir. Bu çalışma kapsamında, sonlu elemanlar yöntemini kullanan Plaxis programı kullanılarak tabakalı zeminlere oturan dairesel bir temelin gerilme-şekil değiştirme davranışları detaylı bir şekilde incelenmiştir. Tabakalı zeminler, arazide yapılmış bir gurup plaka yükleme deneyi dikkate alınarak, alt kısımda kohezyonlu zayıf bir zemin ve üst kısımda ise dolgu olarak düşünülen kohezyonsuz farklı zeminlerden oluşturulmuştur. Plaxis ile yapılan sayısal analizler ile arazide yapılan deney sonuçları karşılaştırılarak modelin güvenilirliği kanıtlanmıştır. Model doğrulandıktan sonra, temel çapı, dolgu yüksekliği ve dolgunun mukavemeti gibi parametrelerin yük deformasyon davranışına etkisini belirlemek için parametrik çalışmalar gerçekleştirilmiştir. Ayrıca çalışma sonuçlarındaki ölçek etkisi ortaya konmuştur. Analiz sonuçları tabakalı zeminlerin nihai taşıma kapasitelerini karşılaştırmak için boyutsuz taşıma kapasitesi oranları şeklinde sunulmuştur. Taşıma kapasitesi oranları incelendiğinde, temel çapı, dolgu kalınlığı ve dolgunun mukavemeti arttıkça taşıma kapasitesi oranının da arttığı belirlenmiştir. Örneğin, içsel sürtünme açısının artmasıyla kalın bir dolgunun taşıma kapasitesi oranında 3,37 kat artış elde edilmiştir. Bununla birlikte temel çapının küçülmesi ile birlikte dolgu kalınlığı ve dolgunun mukavemeti arttıkça ölçek etkisinin arttığı görülmüştür.

Teşekkür

Yazarlar analiz programının kullanımı konusunda desteğinden dolayı Çukurova Üniversitesinden Prof. Dr. Abdulazim YILDIZ’a teşekkürlerini bildirirler.

Kaynakça

  • Binquet, J., & Lee, K. L. (1975). Bearing capacity tests on reinforced earth slabs. Journal of the geotechnical Engineering Division, 101(12), 1241-1255.
  • Briaud, J. L., & Jeanjean, P. (1994). Load settlement curve method for spread footings of sand. In Vertical and Horizontal Deformations of Foundations and Embankments (pp. 1774-1804). ASCE.
  • Brinkgreve, R. B. J., Broere, W. and Waterman, D. (2004). Plaxis finite element code for soil and rock analysis, 2D –Version 8.6.
  • Coduto, D. P., Kitch, W. A., & Yeung, M. C. R. (2001). Foundation design: principles and practices (Vol. 2). USA: Prentice Hall.
  • Dash, S. K., Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197-219.
  • Demir, A., Ornek, M., Laman, M., Yildiz, A., & Misir, G. (2009). Model studies of circular foundations on soft soils. In Proceedings of the 2nd International Workshop on Geotechnics of Soft Soils (pp. 219-226). Taylor and Francis.
  • Dewaikar, D. M., & Mohapatra, B. G. (2003). Computation of bearing capacity factor Nγ-Prandtl's mechanism. Soils and foundations, 43(3), 1-10.
  • Florkiewicz, A. (1989). Upper bound to bearing capacity of layered soils. Canadian Geotechnical Journal, 26(4), 730-736.
  • Frydman, S., & Burd, H. J. (1997). Numerical studies of bearing-capacity factor N γ. Journal of geotechnical and geoenvironmental engineering, 123(1), 20-29.
  • Fukushima, H., Nishimoto, S., & Tomisawa, K. (2005). Scale effect of spread foundation loading tests using various size plates. Independent Administrative Institution Civil Engineering Research Institute for Cold Region, 1-8.
  • Hanna, A. M. (1981). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(7), 915-927.
  • Hanna, A. M. (1982). Bearing capacity of foundations on a weak sand layer overlying a strong deposit. Canadian Geotechnical Journal, 19(3), 392-396.
  • Hansen, J.B. (1970). A revised and extended formula for bearing capacity. Danish Geotechnical Institute Bulletin, 28, 5-11.
  • Ismail Ibrahim, K. M. H. (2016). Bearing capacity of circular footing resting on granular soil overlying soft clay. HBRC journal, 12(1), 71-77.
  • Kenny, M. J., & Andrawes, K. Z. (1997). The bearing capacity of footings on a sand layer overlying soft clay. Geotechnique, 47(2), 339-345.
  • Love, J. P., Burd, H. J., Milligan, G. W. E., & Houlsby, G. T. (1987). Analytical and model studies of reinforcement of a layer of granular fill on a soft clay subgrade. Canadian Geotechnical Journal, 24(4), 611-622.
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian geotechnical journal, 1(1), 16-26.
  • Meyerhof, G. G. (1974). Ultimate bearing capacity of footings on sand layer overlying clay. Canadian Geotechnical Journal, 11(2), 223-229.
  • Michalowski, R. L., & Shi, L. (1995). Bearing capacity of footings over two-layer foundation soils. Journal of Geotechnical Engineering, 121(5), 421-428.
  • Michalowski, R. L., & Shi, L. (1995). Bearing capacity of footings over two-layer foundation soils. Journal of Geotechnical Engineering, 121(5), 421-428.
  • Mosallanezhad, M., & Moayedi, H. (2017). Comparison analysis of bearing capacity approaches for the strip footing on layered soils. Arab J Sci Eng, 42(9), 3711-3722.
  • Murthy, V. N. S. (2002). Geotechnical engineering: principles and practices of soil mechanics and foundation engineering. New York: CRC press
  • Mustafa, B., & Elsharief, A. M. (2020). Experimental Study of the Bearing Capacity of Stiff Clay Overlying Sand with and without Geotextile Inclusion. FES Journal of Engineering Sciences, 9(3), 119-126.
  • Nujid, M. M., & Taha, M. R. (2014). A review of bearing capacity of shallow foundation on clay layered soils using numerical method. Electronic Journal of Geotechnical Engineering, 19.
  • Ochiai, H., Watari, Y. and Tsukamoto, Y. (1996). Soil reinforcement practice for fills over soft ground in Japan. Geosynthetics International, 3 (1), 31-48.
  • Ornek, M., Laman, M., Demir, A., & Yildiz, A. (2012). Numerical analysis of circular footings on natural clay stabilized with a granular fill. Acta geotechnica slovenica, 9(1), 61-75.
  • Ramadan, M. I., & Hussien, M. H. (2015). Bearing capacity of sand overlying clay–strip footing. International Journal of Science and Research (IJSR), 4(11), 1852-1859.
  • Shiau, J. S., Lyamin, A. V., & Sloan, S. W. (2003). Bearing capacity of a sand layer on clay by finite element limit analysis. Canadian Geotechnical Journal, 40(5), 900-915.
  • Silvestri, V. (2003). A limit equilibrium solution for bearing capacity of strip foundations on sand. Canadian geotechnical journal, 40(2), 351-361.
  • Singh, S. P., & Roy, A. K. (2021). Numerical Study of the Behaviour of a Circular Footing on a Layered Granular Soil Under Vertical and Inclined Loading. Civil And Environmental Engineering Reports, 31(1), 29-43.
  • Terzaghi, K.; Peck, R.; Mesri, G. (1943): Soil Mechanics in Engineering Practice. Wiley, Hoboken, New Jersey, United States
  • Uzuner, B., A. (2016). Temel Mühendisliğine Giriş. Derya Kitabevi, 6. Basım, Trabzon, 409s.
  • Zienkiewicz, O.C., (1977). The Finite-Element Method 3rd ed., New York, McGraw- Hill Book Co., 787p.

Investigation of the Effects of Filling and Foundation Parameters on Bearing Capacity in Soil Improved by Filling

Yıl 2021, , 629 - 647, 15.12.2021
https://doi.org/10.31466/kfbd.979559

Öz

Although many theoretical approaches have been put forward to determine the ultimate bearing capacity of layered soils, the assumptions made to simplify the complex structures of soils make it difficult to determine the bearing capacity of layered soils accurately. As a consequence, the use of the finite element method in determining the behavior of soils has become popular in recent years. In this study, the stress-strain behaviors of a circular foundation settling on layered soils were investigated in detail by using the Plaxis program, which uses the finite element method. Layered soils were formed from weak cohesive soil at the bottom and cohesionless soil (filling) at the top, taking into account a group of plate loading tests conducted in the field. The reliability of the model was proven by comparing the numerical analyzes made with the Plaxis and the results of the field experiments. After the model was validated, parametric studies were carried out to determine the effect of some parameters such as foundation diameter, the height of filling, and strength, on load-deformation behavior. In addition, the scale effect in the results of the study was revealed. The results of the analyses are presented as nondimensional bearing capacity ratios to compare the ultimate bearing capacities of layered soils. When the bearing capacity ratios were examined, an increase was noticed in the bearing capacity ratio as the foundation diameter, the height of filling, and the strength increased. For example, with the increase of the internal friction angle, an increase of 3.37 times at bearing capacity ratio was obtained for a thick filling. However, an increase was observed in the scale effect as the height of filling soil and the strength increased with the reduction of the foundation diameter.

Kaynakça

  • Binquet, J., & Lee, K. L. (1975). Bearing capacity tests on reinforced earth slabs. Journal of the geotechnical Engineering Division, 101(12), 1241-1255.
  • Briaud, J. L., & Jeanjean, P. (1994). Load settlement curve method for spread footings of sand. In Vertical and Horizontal Deformations of Foundations and Embankments (pp. 1774-1804). ASCE.
  • Brinkgreve, R. B. J., Broere, W. and Waterman, D. (2004). Plaxis finite element code for soil and rock analysis, 2D –Version 8.6.
  • Coduto, D. P., Kitch, W. A., & Yeung, M. C. R. (2001). Foundation design: principles and practices (Vol. 2). USA: Prentice Hall.
  • Dash, S. K., Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197-219.
  • Demir, A., Ornek, M., Laman, M., Yildiz, A., & Misir, G. (2009). Model studies of circular foundations on soft soils. In Proceedings of the 2nd International Workshop on Geotechnics of Soft Soils (pp. 219-226). Taylor and Francis.
  • Dewaikar, D. M., & Mohapatra, B. G. (2003). Computation of bearing capacity factor Nγ-Prandtl's mechanism. Soils and foundations, 43(3), 1-10.
  • Florkiewicz, A. (1989). Upper bound to bearing capacity of layered soils. Canadian Geotechnical Journal, 26(4), 730-736.
  • Frydman, S., & Burd, H. J. (1997). Numerical studies of bearing-capacity factor N γ. Journal of geotechnical and geoenvironmental engineering, 123(1), 20-29.
  • Fukushima, H., Nishimoto, S., & Tomisawa, K. (2005). Scale effect of spread foundation loading tests using various size plates. Independent Administrative Institution Civil Engineering Research Institute for Cold Region, 1-8.
  • Hanna, A. M. (1981). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(7), 915-927.
  • Hanna, A. M. (1982). Bearing capacity of foundations on a weak sand layer overlying a strong deposit. Canadian Geotechnical Journal, 19(3), 392-396.
  • Hansen, J.B. (1970). A revised and extended formula for bearing capacity. Danish Geotechnical Institute Bulletin, 28, 5-11.
  • Ismail Ibrahim, K. M. H. (2016). Bearing capacity of circular footing resting on granular soil overlying soft clay. HBRC journal, 12(1), 71-77.
  • Kenny, M. J., & Andrawes, K. Z. (1997). The bearing capacity of footings on a sand layer overlying soft clay. Geotechnique, 47(2), 339-345.
  • Love, J. P., Burd, H. J., Milligan, G. W. E., & Houlsby, G. T. (1987). Analytical and model studies of reinforcement of a layer of granular fill on a soft clay subgrade. Canadian Geotechnical Journal, 24(4), 611-622.
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian geotechnical journal, 1(1), 16-26.
  • Meyerhof, G. G. (1974). Ultimate bearing capacity of footings on sand layer overlying clay. Canadian Geotechnical Journal, 11(2), 223-229.
  • Michalowski, R. L., & Shi, L. (1995). Bearing capacity of footings over two-layer foundation soils. Journal of Geotechnical Engineering, 121(5), 421-428.
  • Michalowski, R. L., & Shi, L. (1995). Bearing capacity of footings over two-layer foundation soils. Journal of Geotechnical Engineering, 121(5), 421-428.
  • Mosallanezhad, M., & Moayedi, H. (2017). Comparison analysis of bearing capacity approaches for the strip footing on layered soils. Arab J Sci Eng, 42(9), 3711-3722.
  • Murthy, V. N. S. (2002). Geotechnical engineering: principles and practices of soil mechanics and foundation engineering. New York: CRC press
  • Mustafa, B., & Elsharief, A. M. (2020). Experimental Study of the Bearing Capacity of Stiff Clay Overlying Sand with and without Geotextile Inclusion. FES Journal of Engineering Sciences, 9(3), 119-126.
  • Nujid, M. M., & Taha, M. R. (2014). A review of bearing capacity of shallow foundation on clay layered soils using numerical method. Electronic Journal of Geotechnical Engineering, 19.
  • Ochiai, H., Watari, Y. and Tsukamoto, Y. (1996). Soil reinforcement practice for fills over soft ground in Japan. Geosynthetics International, 3 (1), 31-48.
  • Ornek, M., Laman, M., Demir, A., & Yildiz, A. (2012). Numerical analysis of circular footings on natural clay stabilized with a granular fill. Acta geotechnica slovenica, 9(1), 61-75.
  • Ramadan, M. I., & Hussien, M. H. (2015). Bearing capacity of sand overlying clay–strip footing. International Journal of Science and Research (IJSR), 4(11), 1852-1859.
  • Shiau, J. S., Lyamin, A. V., & Sloan, S. W. (2003). Bearing capacity of a sand layer on clay by finite element limit analysis. Canadian Geotechnical Journal, 40(5), 900-915.
  • Silvestri, V. (2003). A limit equilibrium solution for bearing capacity of strip foundations on sand. Canadian geotechnical journal, 40(2), 351-361.
  • Singh, S. P., & Roy, A. K. (2021). Numerical Study of the Behaviour of a Circular Footing on a Layered Granular Soil Under Vertical and Inclined Loading. Civil And Environmental Engineering Reports, 31(1), 29-43.
  • Terzaghi, K.; Peck, R.; Mesri, G. (1943): Soil Mechanics in Engineering Practice. Wiley, Hoboken, New Jersey, United States
  • Uzuner, B., A. (2016). Temel Mühendisliğine Giriş. Derya Kitabevi, 6. Basım, Trabzon, 409s.
  • Zienkiewicz, O.C., (1977). The Finite-Element Method 3rd ed., New York, McGraw- Hill Book Co., 787p.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bahadır Ok 0000-0001-8333-5671

Talha Sarıcı 0000-0001-8488-5851

Murteda Ünverdi 0000-0002-0893-7450

Hüseyin Çolakoğlu Bu kişi benim 0000-0001-6804-0963

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ok, B., Sarıcı, T., Ünverdi, M., Çolakoğlu, H. (2021). Dolgu ile İyileştirilen Zeminlerde Dolgu ve Temel Parametrelerinin Taşıma Gücüne Etkilerinin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 11(2), 629-647. https://doi.org/10.31466/kfbd.979559