Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication of Au/CuPc/n-Si/In Schottky Diode and Investigation of Diode Parameters from Current-Voltage Characteristics

Yıl 2020, Cilt: 10 Sayı: 1, 230 - 242, 15.06.2020
https://doi.org/10.31466/kfbd.711892

Öz

Copper phthalocyanine organic thin film was deposited on n-Si semiconductor with indium (In) ohmic contact by the spin coating method. Gold (Au) metal is formed by thermal evaporation technique to form a rectifier contact. As a result, Au/CuPc/n-Si/In Schottky diode structure was produced. Diode parameters such as ideality factor, Schottky barrier height, saturation current, series resistance and shunt resistance were investigated by means of current-voltage (I-V) measurements. CuPc thin film deposited between Au and n-Si has shown a good rectifying properties. From this analysis, the values of Schottky barrier height and ideality factor at room temperature have determined as 0.757 eV and 2.49, respectively. Results show that the fabricated diode can be used in various optoelectronic applications.

Proje Numarası

FEN-BAP-C-09112017-163

Kaynakça

  • Akgül, K.B. (2015). Aynı şartlar altında üretilen özdeş Au/n-Si (100) Schottky diyotlarda karakteristik parametrelerin belirlenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Akkılıç, K., Ocak, Y., Kılıçoğlu, T., Ilhan, S. And Temel, H. (2010). Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Current Applied Physics, 10, 337-341.
  • Aydin, M.E., Yakuphanoglu, F., Eom, J.-H. and Hwang, D.-H. (2007). Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current-voltage and capacitance-voltage methods. Physica B, 387, 239.
  • Baraz, N., Yücedağ, İ., Demir, A., Ersöz, G., Altındal, Ş. and Kandaz, M. (2017). Controlling the electrical characteristics of Au/n‐Si structure with and without (biphenyl‐CoPc) and (OHSubs‐ZnPc) interfacial layers at room temperature. Polymers Advanced Technologies, 28, 952-957.
  • Bao, Z., Lovinger, A.J. and Dodabalapur, A. (1996). “Organic field‐effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 69, 3066.
  • Bohlin, K.H. (1986). Genaralized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60, 1223-1224.
  • Capelli, R., Toffanin, S., Generali, G., Usta, H., Facchetti, A. and Muccini, M. (2010). Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Materials, 9, 496.
  • Chen, X., Taguchi, D., Manaka, T. and Iwamoto, M. (2013). Study of blocking effect of Cu-phthalocyanine layer in zinc oxide/pentacene/CuPc/C60/Al organic solar cells by electric field-induced optical second harmonic generation measurement. Organic Electronics, 14, 320-325.
  • Clark, J. and Lanzani, G. (2010). Organic photonics for communications. Nature Photonics, 4, 438.
  • El-Nahass, M.M., Abd-ül-Rahman, K.F. and Darwish A.A.A. (2007). Fabrication and electrical characterization of p-NiPc/n-Si heterojunction. Microelectronics Journal, 38, 91-95.
  • Forrest, S.R. (1997). Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Technique. Chemical Review, 97, 1793–1896.
  • Güllü, Ö. and Türüt A. (2008). Photovoltaic and electronic properties of quercetin/p-InP solar cells. Solar Energy Materials Solar Cells, 92, 1205-1210.
  • Ishii, M. and Taga, Y. (2002). Influence of temperature and drive current on degradation mechanisms in organic light-emitting diodes. Applied Physics Letters, 80, 3430.
  • Khan, S.M., Sayyed, H.H. and Karimov, K.S. (2011). Investigation of temperature-dependent electrical properties of p-VOPc/n-Si heterojunction under dark conditions. Ionics, 17, 307-313.
  • Norde, H.A. (1979). Modified forward I-V plot for schottky diodes with high series resistance. Journal of Applied Physics, 50, 5052-5054.
  • Oruç., Ç and Altındal, A. (2018). Comparative study of I–V methods to extract Au/FePc/p-Si Schottky barrier diode parameters. Applied Physics A, 124, 81-88.
  • Prabakaran, R., Fortunato, E., Martins, R. And Ferreira, I. (2008). Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. Journal of Non Crystalline Solids 354, 2892–2896.
  • Sayyad, M.H., Saleem, M., Karimov, K.S., Yaseen, M., Ali, M., Cheong, K.Y. and Noor, A.F.M. (2010). Synthesis of Zn(II) 5,10,15,20-tetrakis(4׳-isopropylphenyl)porphyrin and its use as a thin film sensor. Applied Physics A, 98, 103.
  • Schuster, C., Kraus, M., Opitz, A., Brütting, W. and Eckern, U. (2010). Transport properties of copper phthalocyanine based organic electronics devices. The European Physical Jornal Special Topics, 80, 117-134.
  • Singh, P. and Ravindra, N.M. (2010). Optical properties of metal phthalocyanines. Journal of Materials Sience, 45, 4013-4020.
  • Simonsen, J., Handke, B., Li, Z. and Møller, P. (2009). A study of the interaction between perylene and the TiO2(110)-(1x1)surface-based on XPS, UPS and NEXAFS measurements. Surface Science, 603, 1270.
  • Snow, A.W., Barger, W.R. (1989). in Phthalocyanines: Properties and Applications, (VCH Publishers, New York) (Chapter 5).
  • Sze, S. M. (1981). Physics of Semiconductor Devices (Second edition). New York:John Wiley & Sons, 362-390.
  • Tang C.W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48,183.
  • Tuğluoğlu, N. and Karadeniz, S. (2012). Analysis of current-voltage and capacitance-voltage characteristics of perylene-monoimide/n-Si Schottky contacts. Current Applied Physics, 12, 1529-1535.
  • URL 1: https://www.ossila.com/product/cupc
  • Yüksel, Ö. F., Tuğluoğlu, N., Gülveren, B., Şafak, H. and Kuş, M. (2013). Electrical Properties of Au/perylene-monoimide/p-Si Schottky Diode. Journal of Alloys and Compounds, 577, 30-36.

Au/CuPc/n-Si/In Schottky Diyotunun Üretilmesi ve Akım-Gerilim Karakteristiklerinden Diyot Parametrelerinin Araştırılması

Yıl 2020, Cilt: 10 Sayı: 1, 230 - 242, 15.06.2020
https://doi.org/10.31466/kfbd.711892

Öz

İndiyum (In) omik kontaklı n-Si yarıiletkeni üzerinde döndürme kaplama yöntemi ile bakır ftalosiyanin (CuPc) organik ince film biriktirilmiştir. Doğrultucu kontak oluşturmak için altın (Au) metali ısısal buharlaştırma tekniği yardımı ile oluşturulmuştur. Sonuçta Au/CuPc/n-Si/In Schottky diyot yapısı üretilmiştir. İdealite faktörü, Schottky engel yüksekliği, doyma akımı, seri direnç ve şönt direnci gibi diyot parametreleri akım-gerilim (I-V) ölçümleri yardımıyla araştırılmıştır. Au ve n-Si arasında biriktirilen CuPc ince filmi iyi bir doğrultma özelliği göstermiştir. Bu analizde, Schottky engel yüksekliği ve idealite faktörü değerleri oda sıcaklığında sırasıyla 0.757 eV ve 2.49 olarak belirlenmiştir. Sonuçlar, üretilen diyodun çeşitli optoelektronik uygulamalarda kullanılabileceğini göstermektedir.

Destekleyen Kurum

GİRESUN ÜNİVERSİTESİ

Proje Numarası

FEN-BAP-C-09112017-163

Kaynakça

  • Akgül, K.B. (2015). Aynı şartlar altında üretilen özdeş Au/n-Si (100) Schottky diyotlarda karakteristik parametrelerin belirlenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Akkılıç, K., Ocak, Y., Kılıçoğlu, T., Ilhan, S. And Temel, H. (2010). Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Current Applied Physics, 10, 337-341.
  • Aydin, M.E., Yakuphanoglu, F., Eom, J.-H. and Hwang, D.-H. (2007). Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current-voltage and capacitance-voltage methods. Physica B, 387, 239.
  • Baraz, N., Yücedağ, İ., Demir, A., Ersöz, G., Altındal, Ş. and Kandaz, M. (2017). Controlling the electrical characteristics of Au/n‐Si structure with and without (biphenyl‐CoPc) and (OHSubs‐ZnPc) interfacial layers at room temperature. Polymers Advanced Technologies, 28, 952-957.
  • Bao, Z., Lovinger, A.J. and Dodabalapur, A. (1996). “Organic field‐effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 69, 3066.
  • Bohlin, K.H. (1986). Genaralized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60, 1223-1224.
  • Capelli, R., Toffanin, S., Generali, G., Usta, H., Facchetti, A. and Muccini, M. (2010). Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Materials, 9, 496.
  • Chen, X., Taguchi, D., Manaka, T. and Iwamoto, M. (2013). Study of blocking effect of Cu-phthalocyanine layer in zinc oxide/pentacene/CuPc/C60/Al organic solar cells by electric field-induced optical second harmonic generation measurement. Organic Electronics, 14, 320-325.
  • Clark, J. and Lanzani, G. (2010). Organic photonics for communications. Nature Photonics, 4, 438.
  • El-Nahass, M.M., Abd-ül-Rahman, K.F. and Darwish A.A.A. (2007). Fabrication and electrical characterization of p-NiPc/n-Si heterojunction. Microelectronics Journal, 38, 91-95.
  • Forrest, S.R. (1997). Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Technique. Chemical Review, 97, 1793–1896.
  • Güllü, Ö. and Türüt A. (2008). Photovoltaic and electronic properties of quercetin/p-InP solar cells. Solar Energy Materials Solar Cells, 92, 1205-1210.
  • Ishii, M. and Taga, Y. (2002). Influence of temperature and drive current on degradation mechanisms in organic light-emitting diodes. Applied Physics Letters, 80, 3430.
  • Khan, S.M., Sayyed, H.H. and Karimov, K.S. (2011). Investigation of temperature-dependent electrical properties of p-VOPc/n-Si heterojunction under dark conditions. Ionics, 17, 307-313.
  • Norde, H.A. (1979). Modified forward I-V plot for schottky diodes with high series resistance. Journal of Applied Physics, 50, 5052-5054.
  • Oruç., Ç and Altındal, A. (2018). Comparative study of I–V methods to extract Au/FePc/p-Si Schottky barrier diode parameters. Applied Physics A, 124, 81-88.
  • Prabakaran, R., Fortunato, E., Martins, R. And Ferreira, I. (2008). Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. Journal of Non Crystalline Solids 354, 2892–2896.
  • Sayyad, M.H., Saleem, M., Karimov, K.S., Yaseen, M., Ali, M., Cheong, K.Y. and Noor, A.F.M. (2010). Synthesis of Zn(II) 5,10,15,20-tetrakis(4׳-isopropylphenyl)porphyrin and its use as a thin film sensor. Applied Physics A, 98, 103.
  • Schuster, C., Kraus, M., Opitz, A., Brütting, W. and Eckern, U. (2010). Transport properties of copper phthalocyanine based organic electronics devices. The European Physical Jornal Special Topics, 80, 117-134.
  • Singh, P. and Ravindra, N.M. (2010). Optical properties of metal phthalocyanines. Journal of Materials Sience, 45, 4013-4020.
  • Simonsen, J., Handke, B., Li, Z. and Møller, P. (2009). A study of the interaction between perylene and the TiO2(110)-(1x1)surface-based on XPS, UPS and NEXAFS measurements. Surface Science, 603, 1270.
  • Snow, A.W., Barger, W.R. (1989). in Phthalocyanines: Properties and Applications, (VCH Publishers, New York) (Chapter 5).
  • Sze, S. M. (1981). Physics of Semiconductor Devices (Second edition). New York:John Wiley & Sons, 362-390.
  • Tang C.W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48,183.
  • Tuğluoğlu, N. and Karadeniz, S. (2012). Analysis of current-voltage and capacitance-voltage characteristics of perylene-monoimide/n-Si Schottky contacts. Current Applied Physics, 12, 1529-1535.
  • URL 1: https://www.ossila.com/product/cupc
  • Yüksel, Ö. F., Tuğluoğlu, N., Gülveren, B., Şafak, H. and Kuş, M. (2013). Electrical Properties of Au/perylene-monoimide/p-Si Schottky Diode. Journal of Alloys and Compounds, 577, 30-36.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Serkan Eymur 0000-0003-3346-6010

Nihat Tuğluoğlu 0000-0001-9428-4347

Proje Numarası FEN-BAP-C-09112017-163
Yayımlanma Tarihi 15 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Eymur, S., & Tuğluoğlu, N. (2020). Au/CuPc/n-Si/In Schottky Diyotunun Üretilmesi ve Akım-Gerilim Karakteristiklerinden Diyot Parametrelerinin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 10(1), 230-242. https://doi.org/10.31466/kfbd.711892