Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Modeling and Simulation of Various Metal/n-Si Contacts

Yıl 2022, Cilt: 12 Sayı: 1, 398 - 413, 15.06.2022
https://doi.org/10.31466/kfbd.1081025

Öz

In this study, various metal/semiconductor contact structures were simulated using Al, Mo, Cu and Ag metals and n-type Si semiconductor. The semi-logarithmic forward current-voltage characteristics of the contacts were obtained using thermionic emission theory between 0 to 0.25 V range. The barrier heights and ideality factors of the contact models were calculated depending on the work function of the metal. Lowest obstacle height is calculated in Al/n-Si contact model as 0.64 eV and the highest obstacle height is calculated in Ag/n-Si contact model as 0.82 eV. A meshing process was performed by dividing the contact models into separate volumetric cells. Thus, during the current conduction, the electron concentration of the surface, the hole concentration and the electrical potential changes along the contact geometry were simulated and the effects of different parameters were also examined by simulation of Schottky contact.

Kaynakça

  • Abbate, C., Busatto, G., Cova, P., Delmonte, N., Giuliani, F., Iannuzzo, F., . . . Velardi, F. (2014). Thermal damage in SiC Schottky diodes induced by SE heavy ions. Microelectronics Reliability, 54(9-10), 2200-2206.
  • Aboelfotoh, M. (1987). Schottky‐barrier behavior of a Ti‐W alloy on Si (100). Journal of applied physics, 61(7), 2558-2565.
  • Akkaya, A. (2021). Au–Ag binary alloys on n-GaAs substrates and effect of work functions on Schottky barrier height. Journal of Materials Science: Materials in Electronics, 32(13), 17448-17461.
  • Akkaya, A., & Ayyıldız, E. (2020a). Automation software for semiconductor research laboratories: electrical parameter calculation program (SeCLaS-PC). Journal of Circuits, Systems and Computers, 29(13), 2050215.
  • Akkaya, A., & Ayyıldız, E. (2020b). Automation software for semiconductor research laboratories: measurement system and instrument control program (SeCLaS-IC). Mapan, 35(3), 343-350.
  • Altindal, S., Farazin, J., Pirgholi-Givi, G., Maril, E., & Azizian-Kalandaragh, Y. (2020). The effects of (Bi2Te3–Bi2O3-TeO2-PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Physica B: Condensed Matter, 582, 411958.
  • Ayyildiz, E., Türüt, A., Efeoğlu, H., Tüzemen, S., Sağlam, M., & Yoğurtçu, Y. K. (1996). Effect of series resistance on the forward current-voltage characteristics of Schottky diodes in the presence of interfacial layer. Solid-State Electronics, 39(1), 83-87.
  • Bakkaloğlu, Ö. F., Ejderha, K., Efeoğlu, H., Karataş, Ş., & Türüt, A. (2021). Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. Journal of Molecular Structure, 1224, 129057.
  • Braun, F. (1874). On the current conduction through metal sulphides. Ann. Phys. Chem, 153, 556.
  • Cohen, M. L. (1979). Schottky and Bardeen limits for Schottky barriers. Journal of Vacuum Science and Technology, 16(5), 1135-1136.
  • Crowell, C., Sarace, J., & Sze, S. (1965). Tungsten-semiconductor Schottky barrier diodes. Trans. Met. Soc. AIME, 233, 478.
  • Eledlebi, K., Ismail, M., & Rezeq, M. d. (2016). Finite element simulation and analysis of nanometal-semiconductor contacts. Nanotechnology Reviews, 5(3), 355-362.
  • Ishii, R., Matsumura, K., Sakai, A., & Sakata, T. (2001). Work function of binary alloys. Applied surface science, 169, 658-661.
  • Kahveci, O., Akkaya, A., Ayyildiz, E., & Türüt, A. (2017). Comparison of the Ti/n-GaAs Schottky CONTACTS’Parameters fabricated using DC magnetron sputtering and thermal evaporation. Surface Review and Letters, 24(04), 1750047.
  • Keffous, A., Siad, M., Cheriet, A., Benrekaa, N., Belkacem, Y., Menari, H., . . . Dahmani, A. (2004). Comparison of electrical and optical parameters of Au/n-Si and Ag/n-Si Schottky barrier photodiodes. Applied surface science, 236(1-4), 42-49.
  • Keskin, M., Akkaya, A., Ayyıldız, E., Uygun Öksüz, A., & Özbay Karakuş, M. (2019). Investigation of the temperature-dependent electrical properties of Au/PEDOT: WO3/p-Si hybrid device. Journal of Materials Science: Materials in Electronics, 30(17), 16676-16686.
  • Kozdon, A., & Spieweck, F. (1992). Determination of differences in the density of silicon single crystals by observing their flotation at different pressures. IEEE transactions on instrumentation and measurement, 41(3), 420-426.
  • Lai, P. Y., & Chen, J.-S. (2009). Influence of electrical field dependent depletion at metal–polymer junctions on resistive switching of poly (N-vinylcarbazole)(PVK)-based memory devices. Organic Electronics, 10(8), 1590-1595.
  • Mott, N. F. (1938). Note on the contact between a metal and an insulator or semi-conductor. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society.
  • Myburg, G., Auret, F., Meyer, W., Louw, C., & Van Staden, M. (1998). Summary of Schottky barrier height data on epitaxially grown n-and p-GaAs. Thin solid films, 325(1-2), 181-186.
  • Neamen, D. Semiconductor physics and devices. 2003: McGraw-Hill Higher Education.
  • Printz, M. (2015). T-CAD analysis of electric fields in n-in-p silicon strip detectors in dependence on the p-stop pattern and doping concentration. Journal of Instrumentation, 10(01), C01048.
  • Qin, G., Zhang, X., Ma, S., Zhang, Q., Fan, C., & Zhao, M. (2018). An accurate computational method for analysis of electromechanical properties of structures with metal-GaN piezoelectric semiconductor contact. Computational Materials Science, 152, 70-77.
  • Rezeq, M. d., Ali, A., Patole, S. P., Eledlebi, K., Dey, R. K., & Cui, B. (2018). The dependence of Schottky junction (I–V) characteristics on the metal probe size in nano metal–semiconductor contacts. AIP Advances, 8(5), 055122.
  • Rhoderick, E., & Williams, R. Metal–Semiconductor Contacts, Clarendon Press, Oxford 1988.
  • Sato, K., & Yasumura, Y. (1985). Study of forward I‐V plot for Schottky diodes with high series resistance. Journal of applied physics, 58(9), 3655-3657.
  • Saxena, P., & Gorji, N. E. (2019). COMSOL simulation of heat distribution in perovskite solar cells: Coupled optical–electrical–thermal 3-D analysis. IEEE Journal of Photovoltaics, 9(6), 1693-1698.
  • Schottky, W., Stormer, R., & Waibel, F. (1931). Rectifying action at the boundary between CuProus oxide and applied metal electrodes. Z. Hoch Frequentztechnik, 37, 162.
  • Takano, H., Kimura, M., Ando, T., Niemcharoen, S., Yasumura, Y., & Sato, K. (2000). Optical response of planar Mo/n-Si/Mo structures with long neutral region and Schottky barriers at both ends. Solid-State Electronics, 44(12), 2161-2164.
  • Tang, A. Y., & Stake, J. (2011). Impact of eddy currents and crowding effects on high-frequency losses in planar Schottky diodes. IEEE Transactions on Electron Devices, 58(10), 3260-3269.
  • Timpa, S., Rahimi, M., Rastikian, J., Suffit, S., Mallet, F., Lafarge, P., . . . Della Rocca, M. L. (2021). Role of metal contacts on the electric and thermoelectric response of hBN/WSe2 based transistors. Journal of applied physics, 130(18), 185102.
  • Tōyama, N. (1988). Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness. Journal of applied physics, 63(8), 2720-2724.
  • Tung, R. T. (2014). The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 1(1), 011304.
  • Vali, I. P., Shetty, P. K., Mahesha, M., Keshav, R., Sathe, V., Phase, D., & Choudhary, R. (2018). Gamma irradiation effects on Al/n-Si Schottky junction properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 436, 191-197.
  • Vieira, J. A., & Cendula, P. (2021). SolCelSim: simulation of charge transport in solar cells developed in Comsol Application Builder. International Journal of Modelling and Simulation, 1-11.
  • Wang, Q., Xu, B., Sun, J., Liu, H., Zhao, Z., Yu, D., . . . He, J. (2014). Direct band gap silicon allotropes. Journal of the American Chemical Society, 136(28), 9826-9829.
  • Yoon, H. S., Joe, H.-E., Jun Kim, S., Lee, H. S., Im, S., Min, B.-K., & Jun, S. C. (2015). Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific reports, 5(1), 1-10.
  • Yoshitake, M. (2021). Work Function and Band Alignment of Electrode Materials: Springer.

Farklı Metal/n-Si Kontakların Sayısal Olarak Modellenmesi ve Simülasyonu

Yıl 2022, Cilt: 12 Sayı: 1, 398 - 413, 15.06.2022
https://doi.org/10.31466/kfbd.1081025

Öz

Bu çalışmada, Al, Mo, Cu ve Ag metalleri ile n-tipi Si yarıiletkeni kullanılarak farklı metal/yarıiletken kontak yapısı modellenmiştir. Kontakların 0-0.25 V aralığında ileri beslem yarı logaritmik akım-gerilim karakteristiği termiyonik emisyon teorisi kullanılarak elde edilmiştir. Kontak modellerin metalin iş fonksiyonuna bağlı olarak engel yükseklikleri ve idealite faktörleri hesaplanmıştır. En düşük engel yüksekliği 0.64 eV olarak Al/n-Si model kontak için, en büyük engel yüksekliği ise 0.82 eV olarak Ag/n-Si model kontak için hesaplanmıştır. Kontak modelleri ayrı hacimsel hücrelere bölünerek bir ağ oluşturma işlemi gerçekleştirilmiştir. Böylece akım iletimi sırasında, kontak geometrisi boyunca, yüzeyin elektron konsantrasyonu, hol konsantrasyonu ve elektriksel potansiyel değişimleri modellenerek farklı parametrelerin etkileri simule edilerek kontağın üzerindeki değişimleri incelenmiştir.

Kaynakça

  • Abbate, C., Busatto, G., Cova, P., Delmonte, N., Giuliani, F., Iannuzzo, F., . . . Velardi, F. (2014). Thermal damage in SiC Schottky diodes induced by SE heavy ions. Microelectronics Reliability, 54(9-10), 2200-2206.
  • Aboelfotoh, M. (1987). Schottky‐barrier behavior of a Ti‐W alloy on Si (100). Journal of applied physics, 61(7), 2558-2565.
  • Akkaya, A. (2021). Au–Ag binary alloys on n-GaAs substrates and effect of work functions on Schottky barrier height. Journal of Materials Science: Materials in Electronics, 32(13), 17448-17461.
  • Akkaya, A., & Ayyıldız, E. (2020a). Automation software for semiconductor research laboratories: electrical parameter calculation program (SeCLaS-PC). Journal of Circuits, Systems and Computers, 29(13), 2050215.
  • Akkaya, A., & Ayyıldız, E. (2020b). Automation software for semiconductor research laboratories: measurement system and instrument control program (SeCLaS-IC). Mapan, 35(3), 343-350.
  • Altindal, S., Farazin, J., Pirgholi-Givi, G., Maril, E., & Azizian-Kalandaragh, Y. (2020). The effects of (Bi2Te3–Bi2O3-TeO2-PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Physica B: Condensed Matter, 582, 411958.
  • Ayyildiz, E., Türüt, A., Efeoğlu, H., Tüzemen, S., Sağlam, M., & Yoğurtçu, Y. K. (1996). Effect of series resistance on the forward current-voltage characteristics of Schottky diodes in the presence of interfacial layer. Solid-State Electronics, 39(1), 83-87.
  • Bakkaloğlu, Ö. F., Ejderha, K., Efeoğlu, H., Karataş, Ş., & Türüt, A. (2021). Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. Journal of Molecular Structure, 1224, 129057.
  • Braun, F. (1874). On the current conduction through metal sulphides. Ann. Phys. Chem, 153, 556.
  • Cohen, M. L. (1979). Schottky and Bardeen limits for Schottky barriers. Journal of Vacuum Science and Technology, 16(5), 1135-1136.
  • Crowell, C., Sarace, J., & Sze, S. (1965). Tungsten-semiconductor Schottky barrier diodes. Trans. Met. Soc. AIME, 233, 478.
  • Eledlebi, K., Ismail, M., & Rezeq, M. d. (2016). Finite element simulation and analysis of nanometal-semiconductor contacts. Nanotechnology Reviews, 5(3), 355-362.
  • Ishii, R., Matsumura, K., Sakai, A., & Sakata, T. (2001). Work function of binary alloys. Applied surface science, 169, 658-661.
  • Kahveci, O., Akkaya, A., Ayyildiz, E., & Türüt, A. (2017). Comparison of the Ti/n-GaAs Schottky CONTACTS’Parameters fabricated using DC magnetron sputtering and thermal evaporation. Surface Review and Letters, 24(04), 1750047.
  • Keffous, A., Siad, M., Cheriet, A., Benrekaa, N., Belkacem, Y., Menari, H., . . . Dahmani, A. (2004). Comparison of electrical and optical parameters of Au/n-Si and Ag/n-Si Schottky barrier photodiodes. Applied surface science, 236(1-4), 42-49.
  • Keskin, M., Akkaya, A., Ayyıldız, E., Uygun Öksüz, A., & Özbay Karakuş, M. (2019). Investigation of the temperature-dependent electrical properties of Au/PEDOT: WO3/p-Si hybrid device. Journal of Materials Science: Materials in Electronics, 30(17), 16676-16686.
  • Kozdon, A., & Spieweck, F. (1992). Determination of differences in the density of silicon single crystals by observing their flotation at different pressures. IEEE transactions on instrumentation and measurement, 41(3), 420-426.
  • Lai, P. Y., & Chen, J.-S. (2009). Influence of electrical field dependent depletion at metal–polymer junctions on resistive switching of poly (N-vinylcarbazole)(PVK)-based memory devices. Organic Electronics, 10(8), 1590-1595.
  • Mott, N. F. (1938). Note on the contact between a metal and an insulator or semi-conductor. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society.
  • Myburg, G., Auret, F., Meyer, W., Louw, C., & Van Staden, M. (1998). Summary of Schottky barrier height data on epitaxially grown n-and p-GaAs. Thin solid films, 325(1-2), 181-186.
  • Neamen, D. Semiconductor physics and devices. 2003: McGraw-Hill Higher Education.
  • Printz, M. (2015). T-CAD analysis of electric fields in n-in-p silicon strip detectors in dependence on the p-stop pattern and doping concentration. Journal of Instrumentation, 10(01), C01048.
  • Qin, G., Zhang, X., Ma, S., Zhang, Q., Fan, C., & Zhao, M. (2018). An accurate computational method for analysis of electromechanical properties of structures with metal-GaN piezoelectric semiconductor contact. Computational Materials Science, 152, 70-77.
  • Rezeq, M. d., Ali, A., Patole, S. P., Eledlebi, K., Dey, R. K., & Cui, B. (2018). The dependence of Schottky junction (I–V) characteristics on the metal probe size in nano metal–semiconductor contacts. AIP Advances, 8(5), 055122.
  • Rhoderick, E., & Williams, R. Metal–Semiconductor Contacts, Clarendon Press, Oxford 1988.
  • Sato, K., & Yasumura, Y. (1985). Study of forward I‐V plot for Schottky diodes with high series resistance. Journal of applied physics, 58(9), 3655-3657.
  • Saxena, P., & Gorji, N. E. (2019). COMSOL simulation of heat distribution in perovskite solar cells: Coupled optical–electrical–thermal 3-D analysis. IEEE Journal of Photovoltaics, 9(6), 1693-1698.
  • Schottky, W., Stormer, R., & Waibel, F. (1931). Rectifying action at the boundary between CuProus oxide and applied metal electrodes. Z. Hoch Frequentztechnik, 37, 162.
  • Takano, H., Kimura, M., Ando, T., Niemcharoen, S., Yasumura, Y., & Sato, K. (2000). Optical response of planar Mo/n-Si/Mo structures with long neutral region and Schottky barriers at both ends. Solid-State Electronics, 44(12), 2161-2164.
  • Tang, A. Y., & Stake, J. (2011). Impact of eddy currents and crowding effects on high-frequency losses in planar Schottky diodes. IEEE Transactions on Electron Devices, 58(10), 3260-3269.
  • Timpa, S., Rahimi, M., Rastikian, J., Suffit, S., Mallet, F., Lafarge, P., . . . Della Rocca, M. L. (2021). Role of metal contacts on the electric and thermoelectric response of hBN/WSe2 based transistors. Journal of applied physics, 130(18), 185102.
  • Tōyama, N. (1988). Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness. Journal of applied physics, 63(8), 2720-2724.
  • Tung, R. T. (2014). The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 1(1), 011304.
  • Vali, I. P., Shetty, P. K., Mahesha, M., Keshav, R., Sathe, V., Phase, D., & Choudhary, R. (2018). Gamma irradiation effects on Al/n-Si Schottky junction properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 436, 191-197.
  • Vieira, J. A., & Cendula, P. (2021). SolCelSim: simulation of charge transport in solar cells developed in Comsol Application Builder. International Journal of Modelling and Simulation, 1-11.
  • Wang, Q., Xu, B., Sun, J., Liu, H., Zhao, Z., Yu, D., . . . He, J. (2014). Direct band gap silicon allotropes. Journal of the American Chemical Society, 136(28), 9826-9829.
  • Yoon, H. S., Joe, H.-E., Jun Kim, S., Lee, H. S., Im, S., Min, B.-K., & Jun, S. C. (2015). Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific reports, 5(1), 1-10.
  • Yoshitake, M. (2021). Work Function and Band Alignment of Electrode Materials: Springer.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Osman Kahveci 0000-0001-5053-0577

Mehmet Fatih Kaya 0000-0002-2444-0583

Erken Görünüm Tarihi 15 Haziran 2022
Yayımlanma Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Kahveci, O., & Kaya, M. F. (2022). Farklı Metal/n-Si Kontakların Sayısal Olarak Modellenmesi ve Simülasyonu. Karadeniz Fen Bilimleri Dergisi, 12(1), 398-413. https://doi.org/10.31466/kfbd.1081025